Physical property-aware multi-UAV spatial coordination for energy-efficient mobile edge computing

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:Complex & Intelligent Systems vol. 11, no. 9 (Sep 2025), p. 409
Egile nagusia: Huang, Fengling
Beste egile batzuk: Su, Xuqi, Wang, Quanbao, Guo, Fusen
Argitaratua:
Springer Nature B.V.
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3237101384
003 UK-CbPIL
022 |a 2199-4536 
022 |a 2198-6053 
024 7 |a 10.1007/s40747-025-02008-2  |2 doi 
035 |a 3237101384 
045 2 |b d20250901  |b d20250930 
100 1 |a Huang, Fengling  |u Shanghai Jiao Tong University, School of Aeronautics and Astronautics, Shanghai, China (GRID:grid.16821.3c) (ISNI:0000 0004 0368 8293) 
245 1 |a Physical property-aware multi-UAV spatial coordination for energy-efficient mobile edge computing 
260 |b Springer Nature B.V.  |c Sep 2025 
513 |a Journal Article 
520 3 |a In recent years, Unmanned Aerial Vehicle (UAV)-assisted Mobile Edge Computing (MEC) systems have emerged as innovative solutions for delivering efficient communication and computing services to Internet of Things (IoT) devices. However, the three-dimensional deployment and trajectory decision of UAVs remain challenging due to their highly non-convex and complex process characteristics. Existing methods often face scalability limitations, hindering their applicability to collaborative tasks as the number of UAVs increases. Furthermore, many approaches rely on simplified UAV models, neglecting the complexities of real-world physical dynamics. To address these issues, we propose a joint optimization framework designed to simultaneously minimize real-world UAV system overhead and enhance Air-to-Ground (A2G) communication capabilities. Our approach incorporates a deployment and trajectory design strategy that captures the comprehensive kinematic and dynamic properties of UAVs. In light of the problem’s inherent nonconvex structure and computational intractability, we introduce a collaborative multi-operator Differential Evolution (DE) variant algorithm with a semi-adaptive strategy, termed CSADE. This algorithm utilizes three distinct mutation strategies and integrates an external archiving mechanism to optimize both the number and locations of UAV Task Points (TPs). Additionally, we present an end-to-end dynamic UAV allocation and integrated flight path optimization method to ensure efficient route planning. The proposed method is evaluated through experiments on four data instances and compared with two related algorithms. Results demonstrate that our approach significantly reduces system operating costs while maintaining effectiveness and stability, highlighting its potential for large-scale UAV-assisted MEC applications. 
653 |a Integer programming 
653 |a Evolutionary computation 
653 |a Internet of Things 
653 |a Strategy 
653 |a Adaptability 
653 |a Edge computing 
653 |a Communication 
653 |a Trajectories 
653 |a Unmanned aerial vehicles 
653 |a Mutation 
653 |a Route planning 
653 |a Optimization 
653 |a Kinematics 
653 |a Mobile computing 
653 |a Traffic flow 
653 |a Algorithms 
653 |a Energy efficiency 
653 |a Dynamic characteristics 
653 |a Energy consumption 
700 1 |a Su, Xuqi  |u Shanghai Jiao Tong University, School of Aeronautics and Astronautics, Shanghai, China (GRID:grid.16821.3c) (ISNI:0000 0004 0368 8293) 
700 1 |a Wang, Quanbao  |u Shanghai Jiao Tong University, School of Aeronautics and Astronautics, Shanghai, China (GRID:grid.16821.3c) (ISNI:0000 0004 0368 8293) 
700 1 |a Guo, Fusen  |u University of New South Wales, School of Systems and Computing, Canberra, Australia (GRID:grid.1005.4) (ISNI:0000 0004 4902 0432) 
773 0 |t Complex & Intelligent Systems  |g vol. 11, no. 9 (Sep 2025), p. 409 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3237101384/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3237101384/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3237101384/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch