Scalable Graph Analytics: A Study on Algorithms and Infrastructure

Guardado en:
Detalles Bibliográficos
Publicado en:ProQuest Dissertations and Theses (2025)
Autor principal: Srinivasan, Sudharshan
Publicado:
ProQuest Dissertations & Theses
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3237105579
003 UK-CbPIL
020 |a 9798290930886 
035 |a 3237105579 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Srinivasan, Sudharshan 
245 1 |a Scalable Graph Analytics: A Study on Algorithms and Infrastructure 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a Graph analytics has become essential for extracting insights from complex, interconnected data across diverse domains such as social networks, biological systems, and natural language processing. However, as data volume and complexity continue to grow, traditional graph processing techniques face significant scalability challenges, limiting their efficiency and effectiveness. Concurrently, advancements in high-performance computing (HPC) and machine learning (ML) offer promising solutions to address these limitations by enhancing computational efficiency and analytical depth.This dissertation investigates the fundamental challenges in scaling large-scale graph analytics and explores how the integration of HPC and ML can lead to more efficient, scalable, and adaptive analytical frameworks. Specifically, we examine how HPC infrastructure can improve the performance of graph processing algorithms, how ML models can be leveraged to address inherent limitations in traditional graph analytics, and how advancements in graph analytics can, in turn, refine and enhance machine learning techniques. By bridging the gap between these fields, this research aims to contribute to the development of next-generation, high-performance graph analytics frameworks capable of handling dynamic, large-scale datasets with greater efficiency and adaptability. 
653 |a Computer science 
653 |a Computer engineering 
653 |a Artificial intelligence 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3237105579/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3237105579/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch