Enhancing image retrieval through optimal barcode representation

Guardado en:
Detalles Bibliográficos
Publicado en:Scientific Reports (Nature Publisher Group) vol. 15, no. 1 (2025), p. 28847-28869
Autor principal: Khosrowshahli, Rasa
Otros Autores: Kheiri, Farnaz, Asilian Bidgoli, Azam, Tizhoosh, H. R., Makrehchi, Masoud, Rahnamayan, Shahryar
Publicado:
Nature Publishing Group
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3237114627
003 UK-CbPIL
022 |a 2045-2322 
024 7 |a 10.1038/s41598-025-14576-x  |2 doi 
035 |a 3237114627 
045 2 |b d20250101  |b d20251231 
084 |a 274855  |2 nlm 
100 1 |a Khosrowshahli, Rasa  |u Faculty of Mathematics and Science, Brock University, L2S 3A1, St. Catharines, ON, Canada (ROR: https://ror.org/056am2717) (GRID: grid.411793.9) (ISNI: 0000 0004 1936 9318) 
245 1 |a Enhancing image retrieval through optimal barcode representation 
260 |b Nature Publishing Group  |c 2025 
513 |a Journal Article 
520 3 |a Data binary encoding has proven to be a versatile tool for optimizing data processing and memory efficiency in various machine learning applications. This includes deep barcoding, generating barcodes from deep learning feature extraction for image retrieval of similar cases among millions of indexed images. Despite the recent advancement in barcode generation methods, converting high-dimensional feature vectors (e.g., deep features) to compact and discriminative binary barcodes is still an urgent necessity and remains an unresolved problem. Difference-based binarization of features is one of the most efficient binarization methods, transforming continuous feature vectors into binary sequences and capturing trend information. However, the performance of this method is highly dependent on the ordering of the input features, leading to a significant combinatorial challenge. This research addresses this problem by optimizing feature sequences based on retrieval performance metrics. Our approach identifies optimal feature orderings, leading to substantial improvements in retrieval effectiveness compared to arbitrary or default orderings. We assess the performance of the proposed approach in various medical and non-medical image retrieval tasks. This evaluation includes medical images from The Cancer Genome Atlas (TCGA), a comprehensive publicly available dataset, as well as COVID-19 Chest X-rays dataset. In addition, we evaluate the proposed approach on non-medical benchmark image datasets, such as CIFAR-10, CIFAR-100, and Fashion-MNIST. Our findings demonstrate the importance of optimizing binary barcode representation to significantly enhance accuracy for fast image retrieval across a wide range of applications, highlighting the applicability and potential of barcodes in various domains. 
653 |a Deep learning 
653 |a Fourier transforms 
653 |a Bar codes 
653 |a Image retrieval 
653 |a Optimization 
653 |a Neural networks 
653 |a Medical research 
653 |a Methods 
653 |a Inventory control 
653 |a Data processing 
653 |a Performance assessment 
653 |a COVID-19 
653 |a Inventory management 
653 |a Inventory 
653 |a Retrieval performance measures 
653 |a Semantics 
653 |a Information retrieval 
653 |a Machine learning 
700 1 |a Kheiri, Farnaz  |u Faculty of Engineering and Applied Sciences, University of Ontario Institute of Technology, L1G 0C5, Oshawa, ON, Canada (ROR: https://ror.org/016zre027) (GRID: grid.266904.f) (ISNI: 0000 0000 8591 5963) 
700 1 |a Asilian Bidgoli, Azam  |u Faculty of Science, Wilfrid Laurier University, N2L 3C5, Waterloo, ON, Canada (ROR: https://ror.org/00fn7gb05) (GRID: grid.268252.9) (ISNI: 0000 0001 1958 9263) 
700 1 |a Tizhoosh, H. R.  |u Kimia Lab, Mayo Clinic, 55905, Rochester, MN, USA (ROR: https://ror.org/02qp3tb03) (GRID: grid.66875.3a) (ISNI: 0000 0004 0459 167X) 
700 1 |a Makrehchi, Masoud  |u Faculty of Engineering and Applied Sciences, University of Ontario Institute of Technology, L1G 0C5, Oshawa, ON, Canada (ROR: https://ror.org/016zre027) (GRID: grid.266904.f) (ISNI: 0000 0000 8591 5963) 
700 1 |a Rahnamayan, Shahryar  |u Department of Engineering, Brock University, L2S 3A1, St. Catharines, ON, Canada (ROR: https://ror.org/056am2717) (GRID: grid.411793.9) (ISNI: 0000 0004 1936 9318) 
773 0 |t Scientific Reports (Nature Publisher Group)  |g vol. 15, no. 1 (2025), p. 28847-28869 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3237114627/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3237114627/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3237114627/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch