MSMCE: A novel representation module for classification of raw mass spectrometry data

Guardado en:
Detalles Bibliográficos
Publicado en:PLoS One vol. 20, no. 8 (Aug 2025), p. e0321239
Autor principal: Zhang, Fengyi
Otros Autores: Gao, Boyong, Wang, Yinchu, Guo, Lin, Zhang, Wei, Xiong, Xingchuang
Publicado:
Public Library of Science
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3237430616
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0321239  |2 doi 
035 |a 3237430616 
045 2 |b d20250801  |b d20250831 
084 |a 174835  |2 nlm 
100 1 |a Zhang, Fengyi 
245 1 |a MSMCE: A novel representation module for classification of raw mass spectrometry data 
260 |b Public Library of Science  |c Aug 2025 
513 |a Journal Article 
520 3 |a Mass spectrometry (MS) analysis plays a crucial role in the biomedical field; however, the high dimensionality and complexity of MS data pose significant challenges for feature extraction and classification. Deep learning has become a dominant approach in data analysis, and while some deep learning methods have achieved progress in MS classification, their feature representation capabilities remain limited. Most existing methods rely on single-channel representations, which struggle to effectively capture structural information within MS data. To address these limitations, we propose a Multi-Channel Embedding Representation Module (MSMCE), which focuses on modeling inter-channel dependencies to generate multi-channel representations of raw MS data. Additionally, we implement a feature fusion mechanism by concatenating the initial encoded representation with the multi-channel embeddings along the channel dimension, significantly enhancing the classification performance of subsequent models. Experimental results on four public datasets demonstrate that the proposed MSMCE module not only achieves substantial improvements in classification performance but also enhances computational efficiency and training stability, highlighting its effectiveness in raw MS data classification and its potential for robust application across diverse datasets. 
653 |a Mass spectrometry 
653 |a Feature extraction 
653 |a Accuracy 
653 |a Data analysis 
653 |a Deep learning 
653 |a Classification 
653 |a Scientific imaging 
653 |a Modules 
653 |a Machine learning 
653 |a Representations 
653 |a Efficiency 
653 |a Datasets 
653 |a Neural networks 
653 |a Design 
653 |a Mass spectroscopy 
653 |a Algorithms 
653 |a Embedding 
653 |a Economic 
700 1 |a Gao, Boyong 
700 1 |a Wang, Yinchu 
700 1 |a Guo, Lin 
700 1 |a Zhang, Wei 
700 1 |a Xiong, Xingchuang 
773 0 |t PLoS One  |g vol. 20, no. 8 (Aug 2025), p. e0321239 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3237430616/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3237430616/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3237430616/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch