Galerkin-compact finite difference residual corrections for nonlinear second order wave equations

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SN Applied Sciences vol. 7, no. 8 (Aug 2025), p. 897
1. Verfasser: Islam, Md Shafiqul
Weitere Verfasser: Hasan, Mahmud, Kamrujjaman, Md
Veröffentlicht:
Springer Nature B.V.
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3237587817
003 UK-CbPIL
022 |a 2523-3963 
022 |a 2523-3971 
024 7 |a 10.1007/s42452-025-07453-9  |2 doi 
035 |a 3237587817 
045 2 |b d20250801  |b d20250831 
100 1 |a Islam, Md Shafiqul  |u University of Dhaka, Department of Applied Mathematics, Dhaka, Bangladesh (GRID:grid.8198.8) (ISNI:0000 0001 1498 6059) 
245 1 |a Galerkin-compact finite difference residual corrections for nonlinear second order wave equations 
260 |b Springer Nature B.V.  |c Aug 2025 
513 |a Journal Article 
520 3 |a In this study, numerical solutions for second-order nonlinear wave equations were obtained, and then were subsequently refined the numerical solution using residual corrections. The proposed method uniquely combines the Galerkin method with the compact finite difference (CFD) method, representing a novel approach in this field. We initially develop a rigorous formulation of second-order wave equations using the Galerkin weighted residual method and obtain numerical results. To solve these equations, third degree Bernstein polynomials are utilized as basis functions in the trial solution. Then we apply our proposed residual correction scheme to refine the numerical solution where fourth-order CFD method are used to solve the associated error wave equations in compliance with the error boundary, and initial conditions. The improved approximations are obtained by adding error values that were obtained based on the estimates of the error wave equation to the weighted residual values. Here Galerkin method and residual correction come together and produce highly accurate results. We also discuss the stability and convergence analysis of our proposed residual correction scheme. Numerical outcomes and absolute errors are compared with exact solutions and solutions found in published literature numerically for different values of space and time step sizes to verify our proposed residual correction scheme. High precision is obtained in case of residual corrections. 
653 |a Accuracy 
653 |a Applied mathematics 
653 |a Physics 
653 |a Partial differential equations 
653 |a Mathematical analysis 
653 |a Fluid dynamics 
653 |a Initial conditions 
653 |a Finite difference method 
653 |a Polynomials 
653 |a Basis functions 
653 |a Exact solutions 
653 |a Approximation 
653 |a Numerical analysis 
653 |a Methods 
653 |a Errors 
653 |a Algorithms 
653 |a Wave equations 
653 |a Galerkin method 
653 |a Boundary conditions 
653 |a 20th century 
653 |a Ordinary differential equations 
653 |a Environmental 
700 1 |a Hasan, Mahmud  |u University of Dhaka, Department of Applied Mathematics, Dhaka, Bangladesh (GRID:grid.8198.8) (ISNI:0000 0001 1498 6059) 
700 1 |a Kamrujjaman, Md  |u University of Dhaka, Department of Mathematics, Dhaka, Bangladesh (GRID:grid.8198.8) (ISNI:0000 0001 1498 6059) 
773 0 |t SN Applied Sciences  |g vol. 7, no. 8 (Aug 2025), p. 897 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3237587817/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3237587817/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3237587817/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch