An Intelligent Surveillance Platform With Deep Tampered Video Detection in Secure Edge-Cloud Services

Guardado en:
Detalles Bibliográficos
Publicado en:International Journal of Intelligent Systems vol. 2025 (2025)
Autor principal: Shao, Yuwen
Otros Autores: Wang, Qiuling, Zhang, Junsong, Tian, Haiying, Zhang, Yong
Publicado:
John Wiley & Sons, Inc.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3238168550
003 UK-CbPIL
022 |a 0884-8173 
022 |a 1098-111X 
024 7 |a 10.1155/int/3744881  |2 doi 
035 |a 3238168550 
045 2 |b d20250101  |b d20251231 
084 |a 163929  |2 nlm 
100 1 |a Shao, Yuwen  |u Technology Center China Tobacco Henan Industrial Co., Ltd. Zhengzhou China; School of Food and Bioengineering Zhengzhou University of Light Industry Zhengzhou China 
245 1 |a An Intelligent Surveillance Platform With Deep Tampered Video Detection in Secure Edge-Cloud Services 
260 |b John Wiley & Sons, Inc.  |c 2025 
513 |a Journal Article 
520 3 |a The increasing complexity of video tampering techniques poses a significant threat to the integrity and security of Internet of Multimedia Things (IoMT) ecosystems, particularly in resource-constrained edge-cloud infrastructures. This paper introduces Multiscale Gated Multihead Attention Depthwise Separable CNN (MGMA-DSCNN), an advanced deep learning framework specifically optimized for real-time tampered video detection in IoMT environments. By integrating lightweight convolutional neural networks (CNNs) with multihead attention mechanisms, MGMA-DSCNN significantly enhances feature extraction while maintaining computational efficiency. Unlike conventional methods, this approach employs a multiscale attention mechanism to refine feature representations, effectively identifying deepfake manipulations, frame insertions, splicing, and adversarial forgeries across diverse multimedia streams. Extensive experiments on multiple forensic video datasets—including the HTVD dataset—demonstrate that MGMA-DSCNN outperforms state-of-the-art architectures such as VGGNet-16, ResNet, and DenseNet, achieving an unprecedented detection accuracy of 98.1%. Furthermore, by leveraging edge-cloud synergy, our framework optimally distributes computational loads, effectively reducing latency and energy consumption, making it highly suitable for real-time security surveillance and forensic investigations. These advancements position MGMA-DSCNN as a scalable, high-performance solution for next-generation intelligent video authentication, offering robust, low-latency detection capabilities in dynamic and resource-constrained IoMT environments. 
653 |a Feature extraction 
653 |a Forgery 
653 |a Datasets 
653 |a Surveillance 
653 |a Artificial neural networks 
653 |a Cloud computing 
653 |a Neural networks 
653 |a Network latency 
653 |a Architecture 
653 |a Machine learning 
653 |a Real time 
653 |a Energy consumption 
653 |a Constraints 
653 |a Cybersecurity 
653 |a Multimedia 
700 1 |a Wang, Qiuling  |u Technology Center China Tobacco Henan Industrial Co., Ltd. Zhengzhou China 
700 1 |a Zhang, Junsong  |u School of Food and Bioengineering Zhengzhou University of Light Industry Zhengzhou China 
700 1 |a Tian, Haiying  |u Technology Center China Tobacco Henan Industrial Co., Ltd. Zhengzhou China 
700 1 |a Zhang, Yong  |u Technology Center China Tobacco Henan Industrial Co., Ltd. Zhengzhou China 
773 0 |t International Journal of Intelligent Systems  |g vol. 2025 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3238168550/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3238168550/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3238168550/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch