A Survey of Image Forensics: Exploring Forgery Detection in Image Colorization

Salvato in:
Dettagli Bibliografici
Pubblicato in:Computers, Materials, & Continua vol. 84, no. 3 (2025), p. 4195-4222
Autore principale: Agarwal, Saurabh
Altri autori: Sharma, Deepak, Girdhar, Nancy, Kim, Cheonshik, Ki-Hyun, Jung
Pubblicazione:
Tech Science Press
Soggetti:
Accesso online:Citation/Abstract
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3238361648
003 UK-CbPIL
022 |a 1546-2218 
022 |a 1546-2226 
024 7 |a 10.32604/cmc.2025.066202  |2 doi 
035 |a 3238361648 
045 2 |b d20250101  |b d20251231 
100 1 |a Agarwal, Saurabh 
245 1 |a A Survey of Image Forensics: Exploring Forgery Detection in Image Colorization 
260 |b Tech Science Press  |c 2025 
513 |a Journal Article 
520 3 |a In today’s digital era, the rapid evolution of image editing technologies has brought about a significant simplification of image manipulation. Unfortunately, this progress has also given rise to the misuse of manipulated images across various domains. One of the pressing challenges stemming from this advancement is the increasing difficulty in discerning between unaltered and manipulated images. This paper offers a comprehensive survey of existing methodologies for detecting image tampering, shedding light on the diverse approaches employed in the field of contemporary image forensics. The methods used to identify image forgery can be broadly classified into two primary categories: classical machine learning techniques, heavily reliant on manually crafted features, and deep learning methods. Additionally, this paper explores recent developments in image forensics, placing particular emphasis on the detection of counterfeit colorization. Image colorization involves predicting colors for grayscale images, thereby enhancing their visual appeal. The advancements in colorization techniques have reached a level where distinguishing between authentic and forged images with the naked eye has become an exceptionally challenging task. This paper serves as an in-depth exploration of the intricacies of image forensics in the modern age, with a specific focus on the detection of colorization forgery, presenting a comprehensive overview of methodologies in this critical field. 
653 |a Forgery 
653 |a Counterfeit 
653 |a Digital imaging 
653 |a Image manipulation 
653 |a Critical field (superconductivity) 
653 |a Forensic sciences 
653 |a Deep learning 
653 |a Machine learning 
653 |a Colorization 
700 1 |a Sharma, Deepak 
700 1 |a Girdhar, Nancy 
700 1 |a Kim, Cheonshik 
700 1 |a Ki-Hyun, Jung 
773 0 |t Computers, Materials, & Continua  |g vol. 84, no. 3 (2025), p. 4195-4222 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3238361648/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3238361648/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch