Integration of YOLOv11 and Histogram Equalization for Fire and Smoke-Based Detection of Forest and Land Fires

Guardado en:
Bibliografiske detaljer
Udgivet i:Computers, Materials, & Continua vol. 84, no. 3 (2025), p. 5361-5380
Hovedforfatter: Dewi, Christine
Andre forfattere: Viaeritas, Melati, Chernovita, Hanna, Mailoa, Evangs, Philemon, Stephen, Abbott, Po
Udgivet:
Tech Science Press
Fag:
Online adgang:Citation/Abstract
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3238361653
003 UK-CbPIL
022 |a 1546-2218 
022 |a 1546-2226 
024 7 |a 10.32604/cmc.2025.067381  |2 doi 
035 |a 3238361653 
045 2 |b d20250101  |b d20251231 
100 1 |a Dewi, Christine 
245 1 |a Integration of YOLOv11 and Histogram Equalization for Fire and Smoke-Based Detection of Forest and Land Fires 
260 |b Tech Science Press  |c 2025 
513 |a Journal Article 
520 3 |a Early detection of Forest and Land Fires (FLF) is essential to prevent the rapid spread of fire as well as minimize environmental damage. However, accurate detection under real-world conditions, such as low light, haze, and complex backgrounds, remains a challenge for computer vision systems. This study evaluates the impact of three image enhancement techniques—Histogram Equalization (HE), Contrast Limited Adaptive Histogram Equalization (CLAHE), and a hybrid method called DBST-LCM CLAHE—on the performance of the YOLOv11 object detection model in identifying fires and smoke. The D-Fire dataset, consisting of 21,527 annotated images captured under diverse environmental scenarios and illumination levels, was used to train and evaluate the model. Each enhancement method was applied to the dataset before training. Model performance was assessed using multiple metrics, including Precision, Recall, mean Average Precision at 50% IoU (mAP50), F1-score, and visual inspection through bounding box results. Experimental results show that all three enhancement techniques improved detection performance. HE yielded the highest mAP50 score of 0.771, along with a balanced precision of 0.784 and recall of 0.703, demonstrating strong generalization across different conditions. DBST-LCM CLAHE achieved the highest Precision score of 79%, effectively reducing false positives, particularly in scenes with dispersed smoke or complex textures. CLAHE, with slightly lower overall metrics, contributed to improved local feature detection. Each technique showed distinct advantages: HE enhanced global contrast; CLAHE improved local structure visibility; and DBST-LCM CLAHE provided an optimal balance through dynamic block sizing and local contrast preservation. These results underline the importance of selecting preprocessing methods according to detection priorities, such as minimizing false alarms or maximizing completeness. This research does not propose a new model architecture but rather benchmarks a recent lightweight detector, YOLOv11, combined with image enhancement strategies for practical deployment in FLF monitoring. The findings support the integration of preprocessing techniques to improve detection accuracy, offering a foundation for real-time FLF detection systems on edge devices or drones, particularly in regions like Indonesia. 
653 |a Recall 
653 |a Datasets 
653 |a Preprocessing 
653 |a Smoke 
653 |a Equalization 
653 |a Image enhancement 
653 |a False alarms 
653 |a Histograms 
653 |a Fire damage 
653 |a Optimization 
653 |a Damage detection 
653 |a Computer vision 
653 |a Object recognition 
653 |a Real time 
653 |a Vision systems 
653 |a Accuracy 
653 |a Deep learning 
653 |a Architecture 
653 |a Methods 
653 |a Forest & brush fires 
653 |a Localization 
653 |a Information technology 
653 |a Efficiency 
700 1 |a Viaeritas, Melati 
700 1 |a Chernovita, Hanna 
700 1 |a Mailoa, Evangs 
700 1 |a Philemon, Stephen 
700 1 |a Abbott, Po 
773 0 |t Computers, Materials, & Continua  |g vol. 84, no. 3 (2025), p. 5361-5380 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3238361653/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3238361653/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch