Photonic neural networks at the edge of spatiotemporal chaos in multimode fibers

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanophotonics vol. 14, no. 16 (2025), p. 2723
1. Verfasser: Bahadır Utku Kesgin
Weitere Verfasser: Teğin, Uğur
Veröffentlicht:
Walter de Gruyter GmbH
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3238363813
003 UK-CbPIL
022 |a 2192-8606 
022 |a 2192-8614 
024 7 |a 10.1515/nanoph-2024-0593  |2 doi 
035 |a 3238363813 
045 2 |b d20250101  |b d20251231 
084 |a 263855  |2 nlm 
100 1 |a Bahadır Utku Kesgin  |u Department of Electrical and Electronics Engineering, Koç University, Istanbul, Turkey 
245 1 |a Photonic neural networks at the edge of spatiotemporal chaos in multimode fibers 
260 |b Walter de Gruyter GmbH  |c 2025 
513 |a Journal Article 
520 3 |a Optical computing has gained significant attention as a potential solution to the growing computational demands of machine learning, particularly for tasks requiring large-scale data processing and high energy efficiency. Optical systems offer promising alternatives to digital neural networks by exploiting light’s parallelism. This study explores a photonic neural network design using spatiotemporal chaos within graded-index multimode fibers to improve machine learning performance. Through numerical simulations and experiments, we show that chaotic light propagation in multimode fibers enhances data classification accuracy across domains, including biomedical imaging, fashion, and satellite geospatial analysis. This chaotic optical approach enables high-dimensional transformations, amplifying data separability and differentiation for greater accuracy. Fine-tuning parameters such as pulse peak power optimizes the reservoir’s chaotic properties, highlighting the need for careful calibration. These findings underscore the potential of chaos-based nonlinear photonic neural networks to advance optical computing in machine learning, paving the way for efficient, scalable architectures. 
653 |a Accuracy 
653 |a Computation 
653 |a Data processing 
653 |a Spatial analysis 
653 |a Photonics 
653 |a Neural networks 
653 |a Machine learning 
653 |a Network design 
653 |a Medical imaging 
653 |a Alternative energy sources 
653 |a Propagation 
653 |a Simulation 
653 |a Datasets 
653 |a Artificial intelligence 
653 |a Fourier transforms 
653 |a Lasers 
653 |a Experiments 
653 |a Numerical analysis 
653 |a Energy efficiency 
653 |a Light 
653 |a Optics 
700 1 |a Teğin, Uğur  |u Department of Electrical and Electronics Engineering, Koç University, Istanbul, Turkey 
773 0 |t Nanophotonics  |g vol. 14, no. 16 (2025), p. 2723 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3238363813/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3238363813/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch