Predicting Tech Readiness through Bibliometric Analysis using Unsupervised Machine Learning

Gardado en:
Detalles Bibliográficos
Publicado en:ISPIM Innovation Symposium (Jun 2025), p. 1-16
Autor Principal: Jain, Bhavesh Mahender
Outros autores: Kumar, Deepak
Publicado:
The International Society for Professional Innovation Management (ISPIM)
Materias:
Acceso en liña:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3238450819
003 UK-CbPIL
035 |a 3238450819 
045 2 |b d20250601  |b d20250630 
084 |a 268728  |2 nlm 
100 1 |a Jain, Bhavesh Mahender  |u Fraunhofer Institute for Systems and Innovation Research 
245 1 |a Predicting Tech Readiness through Bibliometric Analysis using Unsupervised Machine Learning 
260 |b The International Society for Professional Innovation Management (ISPIM)  |c Jun 2025 
513 |a Journal Article 
520 3 |a This study introduces an unsupervised machine learning approach to predict Technology Readiness Levels (TRLs) using bibliometric data. Traditional TRL assessments often depend on expert opinions, which can be subjective and resource intensive. By analysing metrics such as publication counts, patent filings, and grant funding, the proposed model classifies technologies into low, medium, and high readiness categories. Notably, publication-related metrics emerged as the strongest predictors, accounting for over 60% of the model's predictive power. Various unsupervised machine learning models were applied during the study, and among them, the MDBSCAN model achieved the highest accuracy of 84.9%. This data-driven methodology offers a scalable and objective alternative to conventional TRL assessments, enhancing decision-making in research and development management. 
610 4 |a National Aeronautics & Space Administration--NASA 
653 |a Machine learning 
653 |a Collaboration 
653 |a Bibliometrics 
653 |a Technology assessment 
653 |a Trends 
653 |a Publications 
653 |a Decision making 
653 |a Unsupervised learning 
653 |a Commercialization 
653 |a Data analysis 
653 |a Research & development--R&D 
653 |a Subjectivity 
653 |a Technology 
700 1 |a Kumar, Deepak  |u Fraunhofer Institute for Systems and Innovation Research 
773 0 |t ISPIM Innovation Symposium  |g (Jun 2025), p. 1-16 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3238450819/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3238450819/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3238450819/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch