How could GenAI work on in-service teachers’ knowledge building process? An empirical study based on epistemic network analysis

Sparad:
Bibliografiska uppgifter
I publikationen:International Journal of Educational Technology in Higher Education vol. 22, no. 1 (Dec 2025), p. 47
Huvudupphov: Zhang, Hui
Övriga upphov: Wang, Qi
Utgiven:
Springer Nature B.V.
Ämnen:
Länkar:Citation/Abstract
Full Text
Full Text - PDF
Taggar: Lägg till en tagg
Inga taggar, Lägg till första taggen!

MARC

LEADER 00000nab a2200000uu 4500
001 3238556402
003 UK-CbPIL
022 |a 2365-9440 
022 |a 1698-580X 
024 7 |a 10.1186/s41239-025-00544-y  |2 doi 
035 |a 3238556402 
045 2 |b d20251201  |b d20251231 
084 |a 142233  |2 nlm 
100 1 |a Zhang, Hui  |u Beijing Foreign Studies University, Artificial Intelligence and Human Languages Lab, Beijing, China (GRID:grid.443245.0) (ISNI:0000 0001 1457 2745) 
245 1 |a How could GenAI work on in-service teachers’ knowledge building process? An empirical study based on epistemic network analysis 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a In-service teacher professional development (TPD) is essential for improving teacher quality and student outcomes. Effective professional development equips teachers to actively engage in problem-solving and meaning construction. However, current online TPD often lacks tailored support, structured analysis, communication, and feedback, limiting teachers’ ability to engage in deep knowledge-building. Generative Artificial Intelligence (GenAI), exemplified by models like ChatGPT, has attracted significant attention for its potential in education, particularly in offering personalized feedback and fostering deep cognitive engagement. This study examines a large language model developed in China to investigate its impact on in-service teachers’ knowledge-building processes. Through analysis of frequency and epistemic network, this study demonstrates that GenAI significantly enhances in-service teachers’ information analysis and critical thinking. It also promotes greater attention to information processing, evaluation, and knowledge transfer during the knowledge-building process, although it performs less effectively in fostering social interaction and collaboration. The study further reveals that GenAI’s impact on knowledge building varies across learning tasks, with its support being particularly significant in higher-order, complex tasks. Building on these findings, the study offers recommendations for professional development for teachers. 
653 |a Teaching 
653 |a Pedagogy 
653 |a Data processing 
653 |a Feedback 
653 |a Professional development 
653 |a Task complexity 
653 |a Generative artificial intelligence 
653 |a Knowledge management 
653 |a Attention 
653 |a Community 
653 |a Network analysis 
653 |a Cognitive tasks 
653 |a Distance learning 
653 |a Teachers 
653 |a Chatbots 
653 |a Data analysis 
653 |a Large language models 
653 |a Knowledge sharing 
653 |a Literature reviews 
653 |a Collaborative learning 
653 |a Education 
653 |a Knowledge 
653 |a Classroom communication 
653 |a Professional training 
653 |a Problem solving 
653 |a Artificial intelligence 
653 |a Information processing 
653 |a Social interaction 
653 |a Academic achievement 
653 |a Teacher education 
653 |a Educational activities 
653 |a Information sharing 
653 |a Complex tasks 
653 |a Language modeling 
653 |a Critical thinking 
653 |a Educational Quality 
653 |a Learning Analytics 
653 |a Learning Activities 
653 |a Educational Practices 
653 |a Guidance 
653 |a Educational Research 
653 |a Intelligent Tutoring Systems 
653 |a Influence of Technology 
653 |a Cognitive Processes 
653 |a Learning Experience 
653 |a Educational Technology 
653 |a Language Acquisition 
653 |a Cooperative Learning 
653 |a Feedback (Response) 
653 |a Communities of Practice 
653 |a Knowledge Level 
653 |a Electronic Learning 
653 |a Instructional Effectiveness 
653 |a Language Processing 
653 |a Educational Environment 
653 |a Course Content 
653 |a Learner Engagement 
653 |a Educational Facilities Improvement 
653 |a Individual Needs 
700 1 |a Wang, Qi  |u Beijing Foreign Studies University, Artificial Intelligence and Human Languages Lab, Beijing, China (GRID:grid.443245.0) (ISNI:0000 0001 1457 2745) 
773 0 |t International Journal of Educational Technology in Higher Education  |g vol. 22, no. 1 (Dec 2025), p. 47 
786 0 |d ProQuest  |t Political Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3238556402/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3238556402/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3238556402/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch