Quantum Neural Networks: Architecture Design and Quantum Training

Պահպանված է:
Մատենագիտական մանրամասներ
Հրատարակված է:PQDT - Global (2025)
Հիմնական հեղինակ: Liao, Yidong
Հրապարակվել է:
ProQuest Dissertations & Theses
Խորագրեր:
Առցանց հասանելիություն:Citation/Abstract
Full Text - PDF
Full text outside of ProQuest
Ցուցիչներ: Ավելացրեք ցուցիչ
Չկան պիտակներ, Եղեք առաջինը, ով նշում է այս գրառումը!

MARC

LEADER 00000nab a2200000uu 4500
001 3238646222
003 UK-CbPIL
020 |a 9798288831850 
035 |a 3238646222 
045 2 |b d20250101  |b d20251231 
084 |a 189128  |2 nlm 
100 1 |a Liao, Yidong 
245 1 |a Quantum Neural Networks: Architecture Design and Quantum Training 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a Quantum Neural Networks (QNNs) are promising machine learning models with potential quantum advantages over classical neural networks. This thesis focuses on their architecture design, training methodologies, and certain applications, addressing three challenges in QNN research: overcoming barren plateaus in training, designing problem-specific QNN models, and tackling state-of-the-art classical machine learning models. The thesis is divided into three main parts, each targeting a specific challenge. The first part proposes quantum-optimization-powered training methods that exploit hidden structures in the QNN optimization problem to mitigate the barren plateau issue. The second part designs problem-tailored QNNs for graph-structured data, incorporating inductive biases into their architectures to enhance trainability and generalization. The third part explores the quantum implementation of Generative Pre-trained Transformers (GPT) — the original version of ChatGPT. By addressing these challenges, this thesis contributes to advancing the field of Quantum Machine Learning, offering new insights and methodologies for designing and training QNNs. 
653 |a Quantum computing 
653 |a Construction 
653 |a Digitization 
653 |a Neural networks 
653 |a Computer engineering 
653 |a Information technology 
773 0 |t PQDT - Global  |g (2025) 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3238646222/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3238646222/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u https://opus.lib.uts.edu.au/handle/10453/188077