Dynamic Monitoring and Precision Fertilization Decision System for Agricultural Soil Nutrients Using UAV Remote Sensing and GIS

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:Agriculture vol. 15, no. 15 (2025), p. 1627-1654
المؤلف الرئيسي: Chen, Xiaolong
مؤلفون آخرون: Zhang, Hongfeng, Wong Cora Un In
منشور في:
MDPI AG
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full Text + Graphics
Full Text - PDF
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!

MARC

LEADER 00000nab a2200000uu 4500
001 3239015499
003 UK-CbPIL
022 |a 2077-0472 
024 7 |a 10.3390/agriculture15151627  |2 doi 
035 |a 3239015499 
045 2 |b d20250101  |b d20251231 
084 |a 231331  |2 nlm 
100 1 |a Chen, Xiaolong 
245 1 |a Dynamic Monitoring and Precision Fertilization Decision System for Agricultural Soil Nutrients Using UAV Remote Sensing and GIS 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a We propose a dynamic monitoring and precision fertilization decision system for agricultural soil nutrients, integrating UAV remote sensing and GIS technologies to address the limitations of traditional soil nutrient assessment methods. The proposed method combines multi-source data fusion, including hyperspectral and multispectral UAV imagery with ground sensor data, to achieve high-resolution spatial and spectral analysis of soil nutrients. Real-time data processing algorithms enable rapid updates of soil nutrient status, while a time-series dynamic model captures seasonal variations and crop growth stage influences, improving prediction accuracy (RMSE reductions of 43–70% for nitrogen, phosphorus, and potassium compared to conventional laboratory-based methods and satellite NDVI approaches). The experimental validation compared the proposed system against two conventional approaches: (1) laboratory soil testing with standardized fertilization recommendations and (2) satellite NDVI-based fertilization. Field trials across three distinct agroecological zones demonstrated that the proposed system reduced fertilizer inputs by 18–27% while increasing crop yields by 4–11%, outperforming both conventional methods. Furthermore, an intelligent fertilization decision model generates tailored fertilization plans by analyzing real-time soil conditions, crop demands, and climate factors, with continuous learning enhancing its precision over time. The system also incorporates GIS-based visualization tools, providing intuitive spatial representations of nutrient distributions and interactive functionalities for detailed insights. Our approach significantly advances precision agriculture by automating the entire workflow from data collection to decision-making, reducing resource waste and optimizing crop yields. The integration of UAV remote sensing, dynamic modeling, and machine learning distinguishes this work from conventional static systems, offering a scalable and adaptive framework for sustainable farming practices. 
653 |a Agricultural land 
653 |a Technological change 
653 |a Growth stage 
653 |a Crop yield 
653 |a Agricultural practices 
653 |a Recommender systems 
653 |a Unmanned aerial vehicles 
653 |a Fertilization 
653 |a Data integration 
653 |a Seasonal variations 
653 |a Machine learning 
653 |a Nitrogen 
653 |a Soil analysis 
653 |a Remote sensing 
653 |a Phosphorus 
653 |a Crop growth 
653 |a Nutrient status 
653 |a Decision making 
653 |a Remote sensing systems 
653 |a Geographic information systems 
653 |a Algorithms 
653 |a Environmental factors 
653 |a Real time 
653 |a Agricultural wastes 
653 |a Spatial analysis 
653 |a Accuracy 
653 |a Data processing 
653 |a Deep learning 
653 |a Agricultural production 
653 |a Soil testing 
653 |a Spectrum analysis 
653 |a Spatial discrimination 
653 |a Potassium 
653 |a Monitoring 
653 |a Soil nutrients 
653 |a Dynamic models 
653 |a Data collection 
653 |a Sustainable practices 
653 |a Agriculture 
653 |a Spectral analysis 
653 |a Nutrients 
653 |a Precision agriculture 
653 |a Sensors 
653 |a Soil conditions 
653 |a Sustainable agriculture 
653 |a Environmental 
700 1 |a Zhang, Hongfeng 
700 1 |a Wong Cora Un In 
773 0 |t Agriculture  |g vol. 15, no. 15 (2025), p. 1627-1654 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3239015499/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3239015499/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3239015499/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch