Multi-Trait Phenotypic Analysis and Biomass Estimation of Lettuce Cultivars Based on SFM-MVS

Guardado en:
书目详细资料
发表在:Agriculture vol. 15, no. 15 (2025), p. 1662-1690
主要作者: Li, Tiezhu
其他作者: Zhang Yixue, Hu, Lian, Zhao Yiqiu, Cai Zongyao, Yu, Tingting, Zhang, Xiaodong
出版:
MDPI AG
主题:
在线阅读:Citation/Abstract
Full Text + Graphics
Full Text - PDF
标签: 添加标签
没有标签, 成为第一个标记此记录!

MARC

LEADER 00000nab a2200000uu 4500
001 3239016029
003 UK-CbPIL
022 |a 2077-0472 
024 7 |a 10.3390/agriculture15151662  |2 doi 
035 |a 3239016029 
045 2 |b d20250101  |b d20251231 
084 |a 231331  |2 nlm 
100 1 |a Li, Tiezhu  |u School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; 2212316059@stmail.ujs.edu.cn (T.L.); 2112216012@stmail.ujs.edu.cn (Y.Z.); 2222216051@stmail.ujs.edu.cn (Z.C.); 2222216048@stmail.ujs.edu.cn (T.Y.) 
245 1 |a Multi-Trait Phenotypic Analysis and Biomass Estimation of Lettuce Cultivars Based on SFM-MVS 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a To address the problems of traditional methods that rely on destructive sampling, the poor adaptability of fixed equipment, and the susceptibility of single-view angle measurements to occlusions, a non-destructive and portable device for three-dimensional phenotyping and biomass detection in lettuce was developed. Based on the Structure-from-Motion Multi-View Stereo (SFM-MVS) algorithms, a high-precision three-dimensional point cloud model was reconstructed from multi-view RGB image sequences, and 12 phenotypic parameters, such as plant height, crown width, were accurately extracted. Through regression analyses of plant height, crown width, and crown height, and the R2 values were 0.98, 0.99, and 0.99, respectively, the RMSE values were 2.26 mm, 1.74 mm, and 1.69 mm, respectively. On this basis, four biomass prediction models were developed using Adaptive Boosting (AdaBoost), Support Vector Regression (SVR), Gradient Boosting Decision Tree (GBDT), and Random Forest Regression (RFR). The results indicated that the RFR model based on the projected convex hull area, point cloud convex hull surface area, and projected convex hull perimeter performed the best, with an R2 of 0.90, an RMSE of 2.63 g, and an RMSEn of 9.53%, indicating that the RFR was able to accurately simulate lettuce biomass. This research achieves three-dimensional reconstruction and accurate biomass prediction of facility lettuce, and provides a portable and lightweight solution for facility crop growth detection. 
653 |a Accuracy 
653 |a Height 
653 |a Agricultural production 
653 |a Biomass 
653 |a Corn 
653 |a Area 
653 |a Regression analysis 
653 |a Crops 
653 |a Cultivars 
653 |a Machine learning 
653 |a Lettuce 
653 |a Prediction models 
653 |a Decision trees 
653 |a Efficiency 
653 |a Crop growth 
653 |a Image reconstruction 
653 |a Support vector machines 
653 |a Phenotyping 
653 |a Convexity 
653 |a Portable equipment 
653 |a Three dimensional imaging 
653 |a Algorithms 
653 |a Plant growth 
653 |a Light 
653 |a Morphology 
653 |a Environmental 
700 1 |a Zhang Yixue  |u Basic Engineering Training Center, Jiangsu University, Zhenjiang 212013, China 
700 1 |a Hu, Lian  |u Key Laboratory of Key Technology on Agricultural Machine and Equipment, Ministry of Education, South China Agricultural University, Guangzhou 510640, China; lianhu@scau.edu.cn 
700 1 |a Zhao Yiqiu  |u School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; 2212316059@stmail.ujs.edu.cn (T.L.); 2112216012@stmail.ujs.edu.cn (Y.Z.); 2222216051@stmail.ujs.edu.cn (Z.C.); 2222216048@stmail.ujs.edu.cn (T.Y.) 
700 1 |a Cai Zongyao  |u School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; 2212316059@stmail.ujs.edu.cn (T.L.); 2112216012@stmail.ujs.edu.cn (Y.Z.); 2222216051@stmail.ujs.edu.cn (Z.C.); 2222216048@stmail.ujs.edu.cn (T.Y.) 
700 1 |a Yu, Tingting  |u School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; 2212316059@stmail.ujs.edu.cn (T.L.); 2112216012@stmail.ujs.edu.cn (Y.Z.); 2222216051@stmail.ujs.edu.cn (Z.C.); 2222216048@stmail.ujs.edu.cn (T.Y.) 
700 1 |a Zhang, Xiaodong  |u School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; 2212316059@stmail.ujs.edu.cn (T.L.); 2112216012@stmail.ujs.edu.cn (Y.Z.); 2222216051@stmail.ujs.edu.cn (Z.C.); 2222216048@stmail.ujs.edu.cn (T.Y.) 
773 0 |t Agriculture  |g vol. 15, no. 15 (2025), p. 1662-1690 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3239016029/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3239016029/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3239016029/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch