Advancing infection profiling under data uncertainty through contagion potential

Guardado en:
Detalles Bibliográficos
Publicado en:PLoS One vol. 20, no. 8 (Aug 2025), p. e0329828
Autor principal: Roy, Satyaki
Otros Autores: Biswas, Preetom, Ghosh, Preetam
Publicado:
Public Library of Science
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3239016524
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0329828  |2 doi 
035 |a 3239016524 
045 2 |b d20250801  |b d20250831 
084 |a 174835  |2 nlm 
100 1 |a Roy, Satyaki 
245 1 |a Advancing infection profiling under data uncertainty through contagion potential 
260 |b Public Library of Science  |c Aug 2025 
513 |a Journal Article 
520 3 |a During the COVID-19 pandemic, the prevalence of asymptomatic cases challenged the reliability of epidemiological statistics in policymaking. To address this, we introduced contagion potential (CP) as a continuous metric derived from sociodemographic and epidemiological data to quantify the infection risk posed by the asymptomatic within a region. However, CP estimation is hindered by incomplete or biased incidence data, where underreporting and testing constraints make direct estimation infeasible. To overcome this limitation, we employ a hypothesis-testing approach to infer CP from sampled data, allowing for robust estimation despite missing information. Even within the sample collected from spatial contact data, individuals possess partial knowledge of their neighborhoods, as their awareness is restricted to interactions captured by available tracking data. We introduce an adjustment factor that calibrates the sample CPs so that the sample is a reasonable estimate of the population CP. Further complicating estimation, biases in epidemiological and mobility data arise from heterogeneous reporting rates and sampling inconsistencies, which we address through inverse probability weighting to enhance reliability. Using a spatial model for infection spread through social mixing and an optimization framework based on the SIRS epidemic model, we analyze real infection datasets from Italy, Germany, and Austria. Our findings demonstrate that statistical methods can achieve high-confidence CP estimates while accounting for variations in sample size, confidence level, mobility models, and viral strains. By assessing the effects of bias, social mixing, and sampling frequency, we propose statistical corrections to improve CP prediction accuracy. Finally, we discuss how reliable CP estimates can inform outbreak mitigation strategies despite the inherent uncertainties in epidemiological data. 
653 |a Pandemics 
653 |a Infections 
653 |a Statistics 
653 |a COVID-19 vaccines 
653 |a Bias 
653 |a Hypothesis testing 
653 |a Epidemiology 
653 |a Asymptomatic 
653 |a Social networks 
653 |a Contact tracing 
653 |a Samples 
653 |a COVID-19 
653 |a Sampling 
653 |a Statistical methods 
653 |a Statistical analysis 
653 |a Immunization 
653 |a Uncertainty 
653 |a Survival analysis 
653 |a Mobility 
653 |a Spatial data 
653 |a Confidence intervals 
653 |a Pharmaceuticals 
653 |a Reliability 
653 |a Epidemic models 
653 |a Epidemics 
653 |a Sociodemographics 
653 |a Estimates 
653 |a Natural language processing 
653 |a Coronaviruses 
653 |a Health risks 
653 |a Disease transmission 
653 |a Social 
700 1 |a Biswas, Preetom 
700 1 |a Ghosh, Preetam 
773 0 |t PLoS One  |g vol. 20, no. 8 (Aug 2025), p. e0329828 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3239016524/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3239016524/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3239016524/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch