New Ant Colony Optimization Algorithms for Variants of Multidimensional Assignments in d-Partite Graphs

Guardat en:
Dades bibliogràfiques
Publicat a:Applied Sciences vol. 15, no. 15 (2025), p. 8251-8269
Autor principal: Schiff Krzysztof
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3239019255
003 UK-CbPIL
022 |a 2076-3417 
024 7 |a 10.3390/app15158251  |2 doi 
035 |a 3239019255 
045 2 |b d20250101  |b d20251231 
084 |a 231338  |2 nlm 
100 1 |a Schiff Krzysztof 
245 1 |a New Ant Colony Optimization Algorithms for Variants of Multidimensional Assignments in d-Partite Graphs 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This article presents ant algorithms for single- and multi-criteria industrial optimization problems. A common factor in these algorithms is the determination of the set with the maximum number of cliques, which represent the solution to multidimensional assignment problems in d-partite graphs. In the case of weighted incomplete graphs, the goal is to determine the set with the maximum number of cliques and the maximum sum of the weights of their edges. In the case of unweighted incomplete graphs, the goal is to determine the set with the maximum number of maximum cliques. In the case of complete weighted graphs, the goal is to determine all maximum cliques with the minimal sum of their edge weights. These optimization problems are solved using the various ant algorithms proposed in this paper. The proposed algorithms differ not only in terms of the objective function, but also in terms of desirability functions, as previously established, and they achieved a smaller sum of weights for cliques in the case of weighted complete graphs than previous ant algorithms presented in the literature. The same applies to unweighted incomplete graphs. The presented algorithms resulted in a greater number of maximal cliques than previous ant algorithms presented in the literature. This study is the first to propose the presented ant algorithms in the case of weighted incomplete graphs. 
653 |a Integer programming 
653 |a Linear programming 
653 |a Pheromones 
653 |a Graphs 
653 |a Optimization algorithms 
653 |a Assignment problem 
653 |a Neural networks 
773 0 |t Applied Sciences  |g vol. 15, no. 15 (2025), p. 8251-8269 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3239019255/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3239019255/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3239019255/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch