Fine-Tuning Large Language Models for Kazakh Text Simplification
保存先:
| 出版年: | Applied Sciences vol. 15, no. 15 (2025), p. 8344-8367 |
|---|---|
| 第一著者: | |
| その他の著者: | , |
| 出版事項: |
MDPI AG
|
| 主題: | |
| オンライン・アクセス: | Citation/Abstract Full Text + Graphics Full Text - PDF |
| タグ: |
タグなし, このレコードへの初めてのタグを付けませんか!
|
| 抄録: | This paper addresses text simplification task for Kazakh, a morphologically rich, low-resource language, by introducing KazSim, an instruction-tuned model built on multilingual large language models (LLMs). First, we develop a heuristic pipeline to identify complex Kazakh sentences, manually validating its performance on 400 examples and comparing it against a purely LLM-based selection method; we then use this pipeline to assemble a parallel corpus of 8709 complex–simple pairs via LLM augmentation. For the simplification task, we benchmark KazSim against standard Seq2Seq systems, domain-adapted Kazakh LLMs, and zero-shot instruction-following models. On an automatically constructed test set, KazSim (Llama-3.3-70B) achieves BLEU 33.50, SARI 56.38, and F1 87.56 with a length ratio of 0.98, outperforming all baselines. We also explore prompt language (English vs. Kazakh) and conduct human evaluation with three native speakers: KazSim scores 4.08 for fluency, 4.09 for meaning preservation, and 4.42 for simplicity—significantly above GPT-4o-mini. Error analysis shows that remaining failures cluster into tone change, tense change, and semantic drift, reflecting Kazakh’s agglutinative morphology and flexible syntax. |
|---|---|
| ISSN: | 2076-3417 |
| DOI: | 10.3390/app15158344 |
| ソース: | Publicly Available Content Database |