Exploring Purpose-Driven Methods and a Multifaceted Approach in Dam Health Monitoring Data Utilization

Guardado en:
Detalles Bibliográficos
Publicado en:Buildings vol. 15, no. 15 (2025), p. 2803-2843
Autor principal: Li Zhanchao
Otros Autores: Khailah Ebrahim Yahya, Liu Xingyang, Liang Jiaming
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3239021895
003 UK-CbPIL
022 |a 2075-5309 
024 7 |a 10.3390/buildings15152803  |2 doi 
035 |a 3239021895 
045 2 |b d20250101  |b d20251231 
084 |a 231437  |2 nlm 
100 1 |a Li Zhanchao  |u College of Water Resources Science and Engineering, Yangzhou University, Yangzhou 225009, China; 007975@yzu.edu.cn (X.L.); 008696@yzu.edu.cn (J.L.) 
245 1 |a Exploring Purpose-Driven Methods and a Multifaceted Approach in Dam Health Monitoring Data Utilization 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Dam monitoring tracks environmental variables (water level, temperature) and structural responses (deformation, seepage, and stress) to assess safety and performance. Structural health monitoring (SHM) refers to the systematic observation and analysis of the structural condition over time, and it is essential in maintaining the safety, functionality, and long-term performance of dams. This review examines monitoring data applications, covering structural health assessment methods, historical motivations, and key challenges. It discusses monitoring components, data acquisition processes, and sensor roles, stressing the need to integrate environmental, operational, and structural data for decision making. Key objectives include risk management, operational efficiency, safety evaluation, environmental impact assessment, and maintenance planning. Methodologies such as numerical modeling, statistical analysis, and machine learning are critically analyzed, highlighting their strengths and limitations and the demand for advanced predictive techniques. This paper also explores future trends in dam monitoring, offering insights for engineers and researchers to enhance infrastructure resilience. By synthesizing current practices and emerging innovations, this review aims to guide improvements in dam safety protocols, ensuring reliable and sustainable dam operations. The findings provide a foundation for the advancement of monitoring technologies and optimization of dam management strategies worldwide. 
651 4 |a United States--US 
653 |a Dams 
653 |a Data acquisition 
653 |a Risk management 
653 |a Failure 
653 |a Safety 
653 |a Water levels 
653 |a Dam safety 
653 |a Statistical analysis 
653 |a Machine learning 
653 |a Monitoring 
653 |a Monitoring systems 
653 |a Statistical models 
653 |a Inspections 
653 |a Efficiency 
653 |a Risk assessment 
653 |a Strain gauges 
653 |a Structural health monitoring 
653 |a Data processing 
653 |a Design optimization 
653 |a Research methodology 
653 |a Infrastructure 
653 |a Environmental impact assessment 
653 |a Aging 
653 |a Numerical models 
653 |a Structural response 
653 |a Environmental impact 
653 |a Environmental stewardship 
653 |a Sensors 
653 |a Seepage 
653 |a Emergency communications systems 
653 |a Data collection 
653 |a Earthquakes 
653 |a Seismic engineering 
653 |a Decision making 
653 |a Safety management 
700 1 |a Khailah Ebrahim Yahya  |u College of Water Resources Science and Engineering, Yangzhou University, Yangzhou 225009, China; 007975@yzu.edu.cn (X.L.); 008696@yzu.edu.cn (J.L.) 
700 1 |a Liu Xingyang  |u College of Water Resources Science and Engineering, Yangzhou University, Yangzhou 225009, China; 007975@yzu.edu.cn (X.L.); 008696@yzu.edu.cn (J.L.) 
700 1 |a Liang Jiaming  |u College of Water Resources Science and Engineering, Yangzhou University, Yangzhou 225009, China; 007975@yzu.edu.cn (X.L.); 008696@yzu.edu.cn (J.L.) 
773 0 |t Buildings  |g vol. 15, no. 15 (2025), p. 2803-2843 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3239021895/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3239021895/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3239021895/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch