MultiHeart: Secure and Robust Heartbeat Pattern Recognition in Multimodal Cardiac Monitoring System

Guardat en:
Dades bibliogràfiques
Publicat a:Electronics vol. 14, no. 15 (2025), p. 3149-3169
Autor principal: Ahmadi Hossein
Altres autors: Zhang, Yan, Tran, Nghi H
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3239023594
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14153149  |2 doi 
035 |a 3239023594 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Ahmadi Hossein 
245 1 |a MultiHeart: Secure and Robust Heartbeat Pattern Recognition in Multimodal Cardiac Monitoring System 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The widespread adoption of heartbeat monitoring sensors has increased the demand for secure and trustworthy multimodal cardiac monitoring systems capable of accurate heartbeat pattern recognition. While existing systems offer convenience, they often suffer from critical limitations, such as variability in the number of available modalities and missing or noisy data during multimodal fusion, which may compromise both performance and data security. To address these challenges, we propose MultiHeart, which is a robust and secure multimodal interactive cardiac monitoring system designed to provide reliable heartbeat pattern recognition through the integration of diverse and trustworthy cardiac signals. MultiHeart features a novel multi-task learning architecture that includes a reconstruction module to handle missing or noisy modalities and a classification module dedicated to heartbeat pattern recognition. At its core, the system employs a multimodal autoencoder for feature extraction with shared latent representations used by lightweight decoders in the reconstruction module and by a classifier in the classification module. This design enables resilient multimodal fusion while supporting both data reconstruction and heartbeat pattern classification tasks. We implement MultiHeart and conduct comprehensive experiments to evaluate its performance. The system achieves 99.80% accuracy in heartbeat recognition, surpassing single-modal methods by 10% and outperforming existing multimodal approaches by 4%. Even under conditions of partial data input, MultiHeart maintains 94.64% accuracy, demonstrating strong robustness, high reliability, and its effectiveness as a secure solution for next-generation health-monitoring applications. 
610 4 |a Food & Drug Administration--FDA 
653 |a Physiology 
653 |a Accuracy 
653 |a Decoders 
653 |a Collaboration 
653 |a Deep learning 
653 |a Performance evaluation 
653 |a Biometrics 
653 |a Electrocardiography 
653 |a Modules 
653 |a Reconstruction 
653 |a Monitoring systems 
653 |a Pattern recognition 
653 |a Interactive systems 
653 |a Electronic health records 
653 |a Cardiac arrhythmia 
653 |a Neural networks 
653 |a Sensors 
653 |a Classification 
653 |a Data collection 
653 |a Art 
653 |a Robustness (mathematics) 
653 |a Heart 
653 |a Trustworthiness 
653 |a Pattern classification 
700 1 |a Zhang, Yan 
700 1 |a Tran, Nghi H 
773 0 |t Electronics  |g vol. 14, no. 15 (2025), p. 3149-3169 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3239023594/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3239023594/fulltextwithgraphics/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3239023594/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch