Statistical Data-Generative Machine Learning-Based Credit Card Fraud Detection Systems

সংরক্ষণ করুন:
গ্রন্থ-পঞ্জীর বিবরন
প্রকাশিত:Mathematics vol. 13, no. 15 (2025), p. 2446-2461
প্রধান লেখক: Feng Xiaomei
অন্যান্য লেখক: Song-Kyoo, Kim
প্রকাশিত:
MDPI AG
বিষয়গুলি:
অনলাইন ব্যবহার করুন:Citation/Abstract
Full Text + Graphics
Full Text - PDF
ট্যাগগুলো: ট্যাগ যুক্ত করুন
কোনো ট্যাগ নেই, প্রথমজন হিসাবে ট্যাগ করুন!

MARC

LEADER 00000nab a2200000uu 4500
001 3239074511
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13152446  |2 doi 
035 |a 3239074511 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Feng Xiaomei 
245 1 |a Statistical Data-Generative Machine Learning-Based Credit Card Fraud Detection Systems 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This study addresses the challenges of data imbalance and missing values in credit card transaction datasets by employing mode-based imputation and various machine learning models. We analyzed two distinct datasets: one consisting of European cardholders and the other from American Express, applying multiple machine learning algorithms, including Artificial Neural Networks, Convolutional Neural Networks, and Gradient Boosted Decision Trees, as well as others. Notably, the Gradient Boosted Decision Tree demonstrated superior predictive performance, with accuracy increasing by 4.53%, reaching 96.92% on the European cardholders dataset. Mode imputation significantly improved data quality, enabling stable and reliable analysis of merged datasets with up to 50% missing values. Hypothesis testing confirmed that the performance of the merged dataset was statistically significant compared to the original datasets. This study highlights the importance of robust data handling techniques in developing effective fraud detection systems, setting the stage for future research on combining different datasets and improving predictive accuracy in the financial sector. 
610 4 |a American Express Co 
653 |a Machine learning 
653 |a Datasets 
653 |a Hypothesis testing 
653 |a Sampling techniques 
653 |a Hypotheses 
653 |a Artificial neural networks 
653 |a Credit card fraud 
653 |a Fraud prevention 
653 |a Decision making 
653 |a Missing data 
653 |a Algorithms 
653 |a Credit card processing 
653 |a Decision trees 
653 |a Financial institutions 
653 |a Efficiency 
700 1 |a Song-Kyoo, Kim 
773 0 |t Mathematics  |g vol. 13, no. 15 (2025), p. 2446-2461 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3239074511/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3239074511/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3239074511/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch