Finite Integration Method with Chebyshev Expansion for Shallow Water Equations over Variable Topography

Đã lưu trong:
Chi tiết về thư mục
Xuất bản năm:Mathematics vol. 13, no. 15 (2025), p. 2492-2522
Tác giả chính: Ampol, Duangpan
Tác giả khác: Ratinan, Boonklurb, Apisornpanich Lalita, Phiraphat, Sutthimat
Được phát hành:
MDPI AG
Những chủ đề:
Truy cập trực tuyến:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!

MARC

LEADER 00000nab a2200000uu 4500
001 3239074859
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13152492  |2 doi 
035 |a 3239074859 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Ampol, Duangpan  |u Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; ampol.d@chula.ac.th (A.D.); 6370023023@alumni.chula.ac.th (L.A.) 
245 1 |a Finite Integration Method with Chebyshev Expansion for Shallow Water Equations over Variable Topography 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The shallow water equations (SWEs) model fluid flow in rivers, coasts, and tsunamis. Their nonlinearity challenges analytical solutions. We present a numerical algorithm combining the finite integration method with Chebyshev polynomial expansion (FIM-CPE) to solve one- and two-dimensional SWEs. The method transforms partial differential equations into integral equations, approximates spatial terms via Chebyshev polynomials, and uses forward differences for time discretization. Validated on stationary lakes, dam breaks, and Gaussian pulses, the scheme achieved errors below <inline-formula>10−12</inline-formula> for water height and velocity, while conserving mass with volume deviations under <inline-formula>10−5</inline-formula>. Comparisons showed superior shock-capturing versus finite difference methods. For two-dimensional cases, it accurately resolved wave interactions over complex topographies. Though limited to wet beds and small-scale two-dimensional problems, the method provides a robust simulation tool. 
653 |a Finite volume method 
653 |a Velocity 
653 |a Partial differential equations 
653 |a Shallow water equations 
653 |a Topography 
653 |a Finite difference method 
653 |a Integral equations 
653 |a Numerical analysis 
653 |a Polynomials 
653 |a Fluid flow 
653 |a Water 
653 |a Chebyshev approximation 
653 |a Exact solutions 
653 |a Approximation 
653 |a Wave interaction 
700 1 |a Ratinan, Boonklurb  |u Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; ampol.d@chula.ac.th (A.D.); 6370023023@alumni.chula.ac.th (L.A.) 
700 1 |a Apisornpanich Lalita  |u Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; ampol.d@chula.ac.th (A.D.); 6370023023@alumni.chula.ac.th (L.A.) 
700 1 |a Phiraphat, Sutthimat  |u Department of Mathematics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand 
773 0 |t Mathematics  |g vol. 13, no. 15 (2025), p. 2492-2522 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3239074859/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3239074859/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3239074859/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch