Potential of Multi-Source Multispectral vs. Hyperspectral Remote Sensing for Winter Wheat Nitrogen Monitoring

Gardado en:
Detalles Bibliográficos
Publicado en:Remote Sensing vol. 17, no. 15 (2025), p. 2666-2685
Autor Principal: Chen Xiaokai
Outros autores: Miao Yuxin, Kusnierek Krzysztof, Li Fenling, Wang, Chao, Shi Botai, Wu, Fei, Chang Qingrui, Kang, Yu
Publicado:
MDPI AG
Materias:
Acceso en liña:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3239079530
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17152666  |2 doi 
035 |a 3239079530 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Chen Xiaokai  |u College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; xiaokaichen@nwafu.edu.cn (X.C.); fenlingli@nwafu.edu.cn (F.L.); 2022060387@nwafu.edu.cn (B.S.) 
245 1 |a Potential of Multi-Source Multispectral vs. Hyperspectral Remote Sensing for Winter Wheat Nitrogen Monitoring 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Timely and accurate monitoring of crop nitrogen (N) status is essential for precision agriculture. UAV-based hyperspectral remote sensing offers high-resolution data for estimating plant nitrogen concentration (PNC), but its cost and complexity limit large-scale application. This study compares the performance of UAV hyperspectral data (S185 sensor) with simulated multispectral data from DJI Phantom 4 Multispectral (P4M), PlanetScope (PS), and Sentinel-2A (S2) in estimating winter wheat PNC. Spectral data were collected across six growth stages over two seasons and resampled to match the spectral characteristics of the three multispectral sensors. Three variable selection strategies (one-dimensional (1D) spectral reflectance, optimized two-dimensional (2D), and three-dimensional (3D) spectral indices) were combined with Random Forest Regression (RFR), Support Vector Machine Regression (SVMR), and Partial Least Squares Regression (PLSR) to build PNC prediction models. Results showed that, while hyperspectral data yielded slightly higher accuracy, optimized multispectral indices, particularly from PS and S2, achieved comparable performance. Among models, SVM and RFR showed consistent effectiveness across strategies. These findings highlight the potential of low-cost multispectral platforms for practical crop N monitoring. Future work should validate these models using real satellite imagery and explore multi-source data fusion with advanced learning algorithms. 
651 4 |a United States--US 
653 |a Wheat 
653 |a Accuracy 
653 |a Nitrogen 
653 |a Regression analysis 
653 |a Satellite imagery 
653 |a Least squares method 
653 |a Remote sensing 
653 |a Data processing 
653 |a Unmanned aerial vehicles 
653 |a Winter 
653 |a Data integration 
653 |a Monitoring 
653 |a Machine learning 
653 |a Spectral reflectance 
653 |a Prediction models 
653 |a Vegetation 
653 |a Agricultural economics 
653 |a Regression 
653 |a Support vector machines 
653 |a Precision agriculture 
653 |a Sensors 
653 |a Fertilizers 
653 |a Remote sensing systems 
653 |a Data collection 
653 |a Crops 
653 |a Winter wheat 
653 |a Emission standards 
700 1 |a Miao Yuxin  |u Precision Agriculture Center, Department of Soil, Water and Climate, University of Minnesota, St. Paul, MN 55108, USA; ymiao@umn.edu 
700 1 |a Kusnierek Krzysztof  |u Center for Precision Agriculture, Norwegian Institute of Bioeconomy Research (NIBIO), Nylinna 226, 2849 Kapp, Norway; krzysztof.kusnierek@nibio.no 
700 1 |a Li Fenling  |u College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; xiaokaichen@nwafu.edu.cn (X.C.); fenlingli@nwafu.edu.cn (F.L.); 2022060387@nwafu.edu.cn (B.S.) 
700 1 |a Wang, Chao  |u College of Agronomy, Shanxi Agriculture University, Taigu 030801, China; wangc1988@sxau.edu.cn 
700 1 |a Shi Botai  |u College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; xiaokaichen@nwafu.edu.cn (X.C.); fenlingli@nwafu.edu.cn (F.L.); 2022060387@nwafu.edu.cn (B.S.) 
700 1 |a Wu, Fei  |u Precision Agriculture Lab, Department Life Science Engineering, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany; feiy.wu@tum.de (F.W.); kang.yu@tum.de (K.Y.) 
700 1 |a Chang Qingrui  |u College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; xiaokaichen@nwafu.edu.cn (X.C.); fenlingli@nwafu.edu.cn (F.L.); 2022060387@nwafu.edu.cn (B.S.) 
700 1 |a Kang, Yu  |u Precision Agriculture Lab, Department Life Science Engineering, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany; feiy.wu@tum.de (F.W.); kang.yu@tum.de (K.Y.) 
773 0 |t Remote Sensing  |g vol. 17, no. 15 (2025), p. 2666-2685 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3239079530/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3239079530/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3239079530/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch