Effects of Clouds and Shadows on the Use of Independent Component Analysis for Feature Extraction

Guardado en:
Detalles Bibliográficos
Publicado en:Remote Sensing vol. 17, no. 15 (2025), p. 2632-2668
Autor principal: Bosques-Perez, Marcos A
Otros Autores: Rishe Naphtali, Thony, Yan, Deng Liangdong, Malek, Adjouadi
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3239079535
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17152632  |2 doi 
035 |a 3239079535 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Bosques-Perez, Marcos A  |u Center for Advanced Technology and Education, Department of Electrical and Computing Engineering, College of Engineering and Computing, Florida International University, 10555 West Flagler St. EC 3900, Miami, FL 33174, USA; mbosq005@fiu.edu (M.A.B.-P.); adjouadi@fiu.edu (M.A.) 
245 1 |a Effects of Clouds and Shadows on the Use of Independent Component Analysis for Feature Extraction 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a One of the persistent challenges in multispectral image analysis is the interference caused by dense cloud cover and its resulting shadows, which can significantly obscure surface features. This becomes especially problematic when attempting to monitor surface changes over time using satellite imagery, such as from Landsat-8. In this study, rather than simply masking visual obstructions, we aimed to investigate the role and influence of clouds within the spectral data itself. To achieve this, we employed Independent Component Analysis (ICA), a statistical method capable of decomposing mixed signals into independent source components. By applying ICA to selected Landsat-8 bands and analyzing each component individually, we assessed the extent to which cloud signatures are entangled with surface data. This process revealed that clouds contribute to multiple ICA components simultaneously, indicating their broad spectral influence. With this influence on multiple wavebands, we managed to configure a set of components that could perfectly delineate the extent and location of clouds. Moreover, because Landsat-8 lacks cloud-penetrating wavebands, such as those in the microwave range (e.g., SAR), the surface information beneath dense cloud cover is not captured at all, making it physically impossible for ICA to recover what is not sensed in the first place. Despite these limitations, ICA proved effective in isolating and delineating cloud structures, allowing us to selectively suppress them in reconstructed images. Additionally, the technique successfully highlighted features such as water bodies, vegetation, and color-based land cover differences. These findings suggest that while ICA is a powerful tool for signal separation and cloud-related artifact suppression, its performance is ultimately constrained by the spectral and spatial properties of the input data. Future improvements could be realized by integrating data from complementary sensors—especially those operating in cloud-penetrating wavelengths—or by using higher spectral resolution imagery with narrower bands. 
610 4 |a US Geological Survey 
651 4 |a Australia 
651 4 |a South Florida 
651 4 |a United States--US 
651 4 |a Adelaide South Australia Australia 
653 |a Feature extraction 
653 |a Reconstruction period-US 
653 |a Deep learning 
653 |a Datasets 
653 |a Landsat 
653 |a Independent component analysis 
653 |a Cloud cover 
653 |a Satellite imagery 
653 |a Image processing 
653 |a Statistical methods 
653 |a Land cover 
653 |a Shadows 
653 |a Machine learning 
653 |a Vegetation 
653 |a Obstructions 
653 |a Image analysis 
653 |a Remote sensing 
653 |a Image reconstruction 
653 |a Spectral resolution 
653 |a Environmental monitoring 
653 |a Wavelengths 
653 |a Clouds 
700 1 |a Rishe Naphtali  |u Center for Advanced Technology and Education, Department of Electrical and Computing Engineering, College of Engineering and Computing, Florida International University, 10555 West Flagler St. EC 3900, Miami, FL 33174, USA; mbosq005@fiu.edu (M.A.B.-P.); adjouadi@fiu.edu (M.A.) 
700 1 |a Thony, Yan  |u Center for Advanced Technology and Education, Department of Electrical and Computing Engineering, College of Engineering and Computing, Florida International University, 10555 West Flagler St. EC 3900, Miami, FL 33174, USA; mbosq005@fiu.edu (M.A.B.-P.); adjouadi@fiu.edu (M.A.) 
700 1 |a Deng Liangdong  |u Knight Foundation School of Computing and Information Sciences, College of Engineering and Computing, Florida International University, 11200 SW 8th Street, CASE 354, Miami, FL 33199, USA 
700 1 |a Malek, Adjouadi  |u Center for Advanced Technology and Education, Department of Electrical and Computing Engineering, College of Engineering and Computing, Florida International University, 10555 West Flagler St. EC 3900, Miami, FL 33174, USA; mbosq005@fiu.edu (M.A.B.-P.); adjouadi@fiu.edu (M.A.) 
773 0 |t Remote Sensing  |g vol. 17, no. 15 (2025), p. 2632-2668 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3239079535/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3239079535/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3239079535/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch