A Localization Enhancement Method Based on Direct-Path Identification and Tracking for Future Networks

Guardado en:
Detalles Bibliográficos
Publicado en:Sensors vol. 25, no. 15 (2025), p. 4538-4556
Autor principal: Huang, Yuhong
Otros Autores: Zhao, Youping
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3239087832
003 UK-CbPIL
022 |a 1424-8220 
024 7 |a 10.3390/s25154538  |2 doi 
035 |a 3239087832 
045 2 |b d20250101  |b d20251231 
084 |a 231630  |2 nlm 
100 1 |a Huang, Yuhong 
245 1 |a A Localization Enhancement Method Based on Direct-Path Identification and Tracking for Future Networks 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Localization is one of the essential problems in the Internet of Things (IoT). Dynamic changes in the radio environment may lead to poor localization accuracy or discontinuous localization in non-line-of-sight (NLOS) scenarios. To address this problem, this paper proposes a localization enhancement method based on direct-path identification and tracking. More specifically, the proposed method significantly reduces the range error and localization error by quickly identifying the line-of-sight (LOS) to NLOS transition and effectively tracking the direct path. In a large testing hall, localization experiments based on the ultra-wideband (UWB) signal have been carried out. Experimental results show that the proposed method achieves a root mean square localization error of less than 0.3 m along the user equipment (UE) movement trajectory with serious NLOS propagation conditions. Compared with conventional methods, the proposed method significantly improves localization accuracy while ensuring continuous localization. 
653 |a Propagation 
653 |a Accuracy 
653 |a Transmitters 
653 |a Methods 
653 |a Algorithms 
653 |a Localization 
653 |a Identification 
653 |a Internet of Things 
653 |a Neural networks 
700 1 |a Zhao, Youping 
773 0 |t Sensors  |g vol. 25, no. 15 (2025), p. 4538-4556 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3239087832/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3239087832/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3239087832/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch