P2ESA: Privacy-Preserving Environmental Sensor-Based Authentication

Đã lưu trong:
Chi tiết về thư mục
Xuất bản năm:Sensors vol. 25, no. 15 (2025), p. 4842-4862
Tác giả chính: Andraž, Krašovec
Tác giả khác: Baldini Gianmarco, Pejović Veljko
Được phát hành:
MDPI AG
Những chủ đề:
Truy cập trực tuyến:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!

MARC

LEADER 00000nab a2200000uu 4500
001 3239090971
003 UK-CbPIL
022 |a 1424-8220 
024 7 |a 10.3390/s25154842  |2 doi 
035 |a 3239090971 
045 2 |b d20250101  |b d20251231 
084 |a 231630  |2 nlm 
100 1 |a Andraž, Krašovec  |u Joint Research Centre, European Commission, Via Enrico Fermi 2749, 21027 Ispra, Italy; gianmarco.baldini@ec.europa.eu 
245 1 |a P<sup>2</sup>ESA: Privacy-Preserving Environmental Sensor-Based Authentication 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The presence of Internet of Things (IoT) devices in modern working and living environments is growing rapidly. The data collected in such environments enable us to model users’ behaviour and consequently identify and authenticate them. However, these data may contain information about the user’s current activity, emotional state, or other aspects that are not relevant for authentication. In this work, we employ adversarial deep learning techniques to remove privacy-revealing information from the data while keeping the authentication performance levels almost intact. Furthermore, we develop and apply various techniques to offload the computationally weak edge devices that are part of the machine learning pipeline at training and inference time. Our experiments, conducted on two multimodal IoT datasets, show that P2ESA can be efficiently deployed and trained, and with user identification rates of between 75.85% and 93.31% (c.f. 6.67% baseline), can represent a promising support solution for authentication, while simultaneously fully obfuscating sensitive information. 
653 |a Privacy 
653 |a Biometrics 
653 |a Computer terminals 
653 |a Passwords 
653 |a Access control 
653 |a Internet of Things 
653 |a Sensors 
700 1 |a Baldini Gianmarco  |u Joint Research Centre, European Commission, Via Enrico Fermi 2749, 21027 Ispra, Italy; gianmarco.baldini@ec.europa.eu 
700 1 |a Pejović Veljko  |u Faculty of Computer and Information Science, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia; veljko.pejovic@fri.uni-lj.si 
773 0 |t Sensors  |g vol. 25, no. 15 (2025), p. 4842-4862 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3239090971/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3239090971/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3239090971/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch