Federated learning for digital twin applications: a privacy-preserving and low-latency approach

Guardat en:
Dades bibliogràfiques
Publicat a:PeerJ Computer Science (Aug 8, 2025)
Autor principal: Li, Jie
Altres autors: Wang, Dong
Publicat:
PeerJ, Inc.
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3239095308
003 UK-CbPIL
022 |a 2376-5992 
024 7 |a 10.7717/peerj-cs.2877  |2 doi 
035 |a 3239095308 
045 0 |b d20250808 
100 1 |a Li, Jie 
245 1 |a Federated learning for digital twin applications: a privacy-preserving and low-latency approach 
260 |b PeerJ, Inc.  |c Aug 8, 2025 
513 |a Journal Article 
520 3 |a The digital twin (DT) concept has recently gained widespread application for mapping the state of physical entities, enabling real-time analysis, prediction, and optimization, thereby enhancing the management and control of physical systems. However, when sensitive information is extracted from physical entities, it faces potential leakage risks, as DT service providers are typically honest yet curious. Federated learning (FL) offers a new distributed learning paradigm that protects privacy by transmitting model updates from edge servers to local devices, allowing training on local datasets. Nevertheless, the training parameters communicated between local mobile devices and edge servers may contain raw data that malicious adversaries could exploit. Furthermore, variations in mapping bias across local devices and the presence of malicious clients can degrade FL training accuracy. To address these security and privacy threats, this paper proposes the FL-FedDT scheme—a privacy-preserving and low-latency FL method that employs an enhanced Paillier homomorphic encryption algorithm to safeguard the privacy of local device parameters without transmitting data to the server. Our approach introduces an improved Paillier encryption method with a new hyperparameter and pre-calculates multiple random intermediate values during the key generation stage, significantly reducing encryption time and thereby expediting model training. Additionally, we implement a trusted FL global aggregation method that incorporates learning quality and interaction records to identify and mitigate malicious updates, dynamically adjusting weights to counteract the threat of malicious clients. To evaluate the efficiency of our proposed scheme, we conducted extensive experiments, with results validating that our approach achieves training accuracy and security on par with baseline methods, while substantially reducing FL iteration time. This enhancement contributes to improved DT mapping and service quality for physical entities. (The code for this study is publicly available on GitHub at: https://github.com/fujianU/federated-learning. The URL address of the MNIST dataset is: https://gitcode.com/Resource-Bundle-Collection/d47b0/overview?utm_source=pan_gitcode&index=top&type=href&;.) 
653 |a Encryption 
653 |a Datasets 
653 |a Accuracy 
653 |a Collaboration 
653 |a Servers 
653 |a Communication 
653 |a Digital twins 
653 |a Privacy 
653 |a Edge computing 
653 |a Mapping 
653 |a Transmission 
653 |a Blockchain 
653 |a Algorithms 
653 |a Clients 
653 |a Real time 
653 |a Federated learning 
653 |a Parameters 
653 |a Energy consumption 
653 |a Cybersecurity 
653 |a Efficiency 
700 1 |a Wang, Dong 
773 0 |t PeerJ Computer Science  |g (Aug 8, 2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3239095308/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3239095308/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3239095308/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch