MARC

LEADER 00000nab a2200000uu 4500
001 3239225046
003 UK-CbPIL
022 |a 2041-1723 
024 7 |a 10.1038/s41467-025-62525-z  |2 doi 
035 |a 3239225046 
045 2 |b d20250101  |b d20251231 
084 |a 145839  |2 nlm 
100 1 |a Ogier du Terrail, Jean  |u Owkin, Inc., New York, NY, USA 
245 1 |a FedECA: federated external control arms for causal inference with time-to-event data in distributed settings 
260 |b Nature Publishing Group  |c 2025 
513 |a Journal Article 
520 3 |a External control arms can inform early clinical development of experimental drugs and provide efficacy evidence for regulatory approval. However, accessing sufficient real-world or historical clinical trials data is challenging. Indeed, regulations protecting patients’ rights by strictly controlling data processing make pooling data from multiple sources in a central server often difficult. To address these limitations, we develop a method that leverages federated learning to enable inverse probability of treatment weighting for time-to-event outcomes on separate cohorts without needing to pool data. To showcase its potential, we apply it in different settings of increasing complexity, culminating with a real-world use-case in which our method is used to compare the treatment effect of two approved chemotherapy regimens using data from three separate cohorts of patients with metastatic pancreatic cancer. By sharing our code, we hope it will foster the creation of federated research networks and thus accelerate drug development.External Control Arm methods for clinical trials were developed to compare the efficacy of a treatment to a control group that is built with data from external sources. Here, the authors present FedECA, a privacy-enhancing method for analyzing treatment effects across institutions, streamlining multi-centric trial design and thereby accelerating drug development while minimizing patient data exposure. 
610 4 |a Food & Drug Administration--FDA 
653 |a Clinical trials 
653 |a Patients 
653 |a Machine learning 
653 |a Data processing 
653 |a Regression analysis 
653 |a Probability learning 
653 |a Effectiveness 
653 |a Pharmaceutical industry 
653 |a Pancreatic cancer 
653 |a Oncology 
653 |a Information sharing 
653 |a Privacy 
653 |a Metastases 
653 |a Chemotherapy 
653 |a Federated learning 
653 |a Drug development 
653 |a Statistical methods 
653 |a Social 
700 1 |a Klopfenstein, Quentin  |u Owkin, Inc., New York, NY, USA 
700 1 |a Li, Honghao  |u Owkin, Inc., New York, NY, USA 
700 1 |a Mayer, Imke  |u Owkin, Inc., New York, NY, USA 
700 1 |a Loiseau, Nicolas  |u Owkin, Inc., New York, NY, USA 
700 1 |a Hallal, Mohammad  |u Owkin, Inc., New York, NY, USA 
700 1 |a Debouver, Michael  |u Owkin, Inc., New York, NY, USA 
700 1 |a Camalon, Thibault  |u Owkin, Inc., New York, NY, USA 
700 1 |a Fouqueray, Thibault  |u Owkin, Inc., New York, NY, USA 
700 1 |a Arellano Castro, Jorge  |u Owkin, Inc., New York, NY, USA 
700 1 |a Yanes, Zahia  |u Owkin, Inc., New York, NY, USA 
700 1 |a Dahan, Laëtitia  |u Department of Digestive Oncology, Hôpital la Timone, Marseille, France (ROR: https://ror.org/05jrr4320) (GRID: grid.411266.6) (ISNI: 0000 0001 0404 1115) 
700 1 |a Taïeb, Julien  |u GI oncology department Georges Pompidou European Hospital, Université Paris Cité, CARPEM CCC, 20 rue leblanc 75015 Paris, APHP, Paris, France (ROR: https://ror.org/05f82e368) (GRID: grid.508487.6) (ISNI: 0000 0004 7885 7602) 
700 1 |a Laurent-Puig, Pierre  |u Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Paris, France (ROR: https://ror.org/00dmms154) (GRID: grid.417925.c); Institut du Cancer Paris CARPEM, AP-HP Centre, Hôpital Européen Georges Pompidou, Paris, France (ROR: https://ror.org/016vx5156) (GRID: grid.414093.b) (ISNI: 0000 0001 2183 5849) 
700 1 |a Bachet, Jean-Baptiste  |u Sorbonne University, Hepatogastroenterology and digestive oncology department, Pitié Salpêtrière hospital, APHP, Paris, France (ROR: https://ror.org/00pg5jh14) (GRID: grid.50550.35) (ISNI: 0000 0001 2175 4109) 
700 1 |a Zhao, Shulin  |u Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Paris, France (ROR: https://ror.org/00dmms154) (GRID: grid.417925.c) 
700 1 |a Nicolle, Remy  |u Université Paris Cité, Centre de Recherche sur l’Inflammation (CRI), INSERM, U1149, CNRS, ERL 8252, F-75018, Paris, France (ROR: https://ror.org/02feahw73) (GRID: grid.4444.0) (ISNI: 0000 0001 2112 9282) 
700 1 |a Cros, Jérôme  |u Department of Pathology, Université Paris Cité - FHU MOSAIC, Beaujon Hospital, Clichy, France (ROR: https://ror.org/03jyzk483) (GRID: grid.411599.1) (ISNI: 0000 0000 8595 4540) 
700 1 |a Gonzalez, Daniel  |u Fédération Francophone de Cancérologie Digestive, Dijon, France (ROR: https://ror.org/02q7qcb13) (GRID: grid.476348.a) 
700 1 |a Carreras-Torres, Robert  |u Institut d’Investigació Biomèdica de Girona (IDIBGI), Girona, Catalonia, Spain (ROR: https://ror.org/020yb3m85) (GRID: grid.429182.4) 
700 1 |a Garcia Velasco, Adelaida  |u Institut d’Investigació Biomèdica de Girona (IDIBGI), Girona, Catalonia, Spain (ROR: https://ror.org/020yb3m85) (GRID: grid.429182.4); Department of Medical Oncology, Catalan Institute of Oncology, Doctor Josep Trueta University Hospital, Girona, Catalonia, Spain (ROR: https://ror.org/01j1eb875) (GRID: grid.418701.b) (ISNI: 0000 0001 2097 8389) 
700 1 |a Abdilleh, Kawther  |u Pancreatic Cancer Action Network, El Segundo, CA, USA (ROR: https://ror.org/03t5n9b81) (GRID: grid.429965.5) (ISNI: 0000 0004 5900 2692) 
700 1 |a Doss, Sudheer  |u Pancreatic Cancer Action Network, El Segundo, CA, USA (ROR: https://ror.org/03t5n9b81) (GRID: grid.429965.5) (ISNI: 0000 0004 5900 2692) 
700 1 |a Balazard, Félix  |u Owkin, Inc., New York, NY, USA 
700 1 |a Andreux, Mathieu  |u Owkin, Inc., New York, NY, USA 
773 0 |t Nature Communications  |g vol. 16, no. 1 (2025), p. 7496-7518 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3239225046/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3239225046/fulltext/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3239225046/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch