An automated software-assisted approach for exploring metabolic susceptibility and degradation products in macromolecules using high-resolution mass spectrometry

Tallennettuna:
Bibliografiset tiedot
Julkaisussa:PLoS One vol. 20, no. 8 (Aug 2025), p. e0324668
Päätekijä: Cifuentes, Paula
Muut tekijät: Zamora, Ismael, Radchenko, Tatiana, Fontaine, Fabien, Garriga, Albert, Morettoni, Luca, Christensen, Jesper Kammersgaard, Helleberg, Hans, Becker, Bridget A
Julkaistu:
Public Library of Science
Aiheet:
Linkit:Citation/Abstract
Full Text
Full Text - PDF
Tagit: Lisää tagi
Ei tageja, Lisää ensimmäinen tagi!

MARC

LEADER 00000nab a2200000uu 4500
001 3239335352
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0324668  |2 doi 
035 |a 3239335352 
045 2 |b d20250801  |b d20250831 
084 |a 174835  |2 nlm 
100 1 |a Cifuentes, Paula 
245 1 |a An automated software-assisted approach for exploring metabolic susceptibility and degradation products in macromolecules using high-resolution mass spectrometry 
260 |b Public Library of Science  |c Aug 2025 
513 |a Journal Article 
520 3 |a A comprehensive understanding of drug metabolism is crucial for advancements in drug development. Automation has improved various stages of this process, from compound procurement to data analysis, but significant challenges persist in the metabolite identification (MetID) of macromolecules due to their size, structural complexity, and associated computational demands. This study introduces new algorithms for automated Liquid Chromatography-High-Resolution Mass Spectrometry (LC-HRMS) data analysis applicable to macromolecules. A novel peak detection approach based on the most abundant mass (MaM) is presented and systematically compared with the monoisotopic mass (MiM) approach, commonly used in small molecules MetID. Additionally, three structure visualization strategies, expanded (atom-level), non-expanded (monomer-level), and a hybrid mode, are evaluated for their impact on computation data processing time and interpretability, based on their distinct fragmentation strategies. The workflow was validated using six diverse datasets, comprising linear and cyclic peptides and oligonucleotides with both natural and unnatural monomers, covering a molecular weight range of 700–7630 Da. A total of 970 metabolites were identified under various experimental and ionization conditions. The MaM algorithm demonstrated higher scores and a greater number of matches, instilling greater confidence in the accurate prediction of metabolite structures, while the non-expanded visualization significantly reduced processing times (ranging from minutes to under an hour for most peptides). Furthermore, the visualization algorithm, which integrates monomer-level and atom/bond notation, enables clear localization of metabolic biotransformations. Compared to previous studies, the proposed workflow demonstrated reduced processing time, consistent detection of degradation products, and enhanced visualization capabilities, advancing automated MetID for macromolecules. 
653 |a Mass spectrometry 
653 |a Hormones 
653 |a Liquid chromatography 
653 |a Datasets 
653 |a Chromatography 
653 |a Biotransformation 
653 |a Drug metabolism 
653 |a Data analysis 
653 |a Proteases 
653 |a Scientific imaging 
653 |a Metabolites 
653 |a Metabolism 
653 |a Automation 
653 |a Peptides 
653 |a Macromolecules 
653 |a Degradation 
653 |a Drug development 
653 |a Ionization 
653 |a Oligonucleotides 
653 |a High resolution 
653 |a Algorithms 
653 |a Mass spectroscopy 
653 |a Molecular weight 
653 |a Enzymes 
653 |a Degradation products 
653 |a Software 
653 |a Data processing 
653 |a Hybrid modes 
653 |a Monomers 
653 |a Workflow 
653 |a Amino acids 
653 |a Localization 
653 |a Bibliographic literature 
653 |a Visualization 
653 |a Environmental 
700 1 |a Zamora, Ismael 
700 1 |a Radchenko, Tatiana 
700 1 |a Fontaine, Fabien 
700 1 |a Garriga, Albert 
700 1 |a Morettoni, Luca 
700 1 |a Christensen, Jesper Kammersgaard 
700 1 |a Helleberg, Hans 
700 1 |a Becker, Bridget A 
773 0 |t PLoS One  |g vol. 20, no. 8 (Aug 2025), p. e0324668 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3239335352/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3239335352/fulltext/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3239335352/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch