Exploring the impact of landscape environments on tourists’ emotional fluctuations in Fujian’s Coastal National Parks using machine learning

Zapisane w:
Opis bibliograficzny
Wydane w:PLoS One vol. 20, no. 8 (Aug 2025), p. e0329118
1. autor: Lu, Zekun
Kolejni autorzy: Chen, Shunhe, Qiu, Chao, Chen, Rongxiang, Lin, Yuchen, Lu, Yichen, Xu, Ying
Wydane:
Public Library of Science
Hasła przedmiotowe:
Dostęp online:Citation/Abstract
Full Text
Full Text - PDF
Etykiety: Dodaj etykietę
Nie ma etykietki, Dołącz pierwszą etykiete!

MARC

LEADER 00000nab a2200000uu 4500
001 3239335441
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0329118  |2 doi 
035 |a 3239335441 
045 2 |b d20250801  |b d20250831 
084 |a 174835  |2 nlm 
100 1 |a Lu, Zekun 
245 1 |a Exploring the impact of landscape environments on tourists’ emotional fluctuations in Fujian’s Coastal National Parks using machine learning 
260 |b Public Library of Science  |c Aug 2025 
513 |a Journal Article 
520 3 |a In recent years, the impact of landscape environments on tourists’ emotions has increasingly become a significant topic in sustainable tourism and urban planning research. However, studies on the relationship between multidimensional environmental features of Coastal National Parks and tourists’ emotions remain relatively limited. This study integrates machine learning and multi-source data to systematically explore how the landscape environments of Fujian’s Coastal National Parks influence tourists’ emotional fluctuations. Using natural language processing (NLP) techniques, sentiment indices were calculated from social media textual data, while semantic segmentation models and image analysis were employed to extract environmental feature data. The Light Gradient Boosting Machine (LightGBM) model and SHapley Additive exPlanations (SHAP) method were used to evaluate the relative importance of different environmental variables on tourists’ emotions, with the findings visualized using ArcMap. The results indicate: (1) Over the past five years, 87.06% of emotions were positive, with the highest sentiment indices observed in the Fuyao Islands, Changle, and Xiamen. (2) Greenness (0.0–0.2) and aquatic rate (0.1–0.15) had the most significant positive impacts on emotions, whereas transportation proportion and paving degree had relatively minor effects. This study provides a theoretical basis for the sustainable development of Coastal National Parks and offers practical insights for optimizing landscape planning to enhance tourists’ emotional experiences. 
653 |a Sustainable development 
653 |a Tourists 
653 |a User generated content 
653 |a Sustainable tourism 
653 |a Emotions 
653 |a Image processing 
653 |a Machine learning 
653 |a Semantic segmentation 
653 |a Protected areas 
653 |a Influence 
653 |a Climate change 
653 |a Tourism 
653 |a Urban planning 
653 |a Geography 
653 |a Image analysis 
653 |a Image segmentation 
653 |a Social media 
653 |a Mental health 
653 |a National parks 
653 |a Parks & recreation areas 
653 |a Indexes 
653 |a Data processing 
653 |a Landscape architecture 
653 |a Social networks 
653 |a Biodiversity 
653 |a Tourism development 
653 |a Economic development 
653 |a Underwater resources 
653 |a Fluctuations 
653 |a Ecotourism 
653 |a Learning algorithms 
653 |a Environmental quality 
653 |a Environmental economics 
653 |a Perceptions 
653 |a Mass media images 
653 |a Natural language processing 
653 |a Sustainability 
653 |a Islands 
653 |a Emotional experiences 
653 |a Segmentation 
653 |a Semantics 
653 |a Landscape 
653 |a Economic 
700 1 |a Chen, Shunhe 
700 1 |a Qiu, Chao 
700 1 |a Chen, Rongxiang 
700 1 |a Lin, Yuchen 
700 1 |a Lu, Yichen 
700 1 |a Xu, Ying 
773 0 |t PLoS One  |g vol. 20, no. 8 (Aug 2025), p. e0329118 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3239335441/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3239335441/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3239335441/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch