Small-World Phenomenon of Global Open-Source Software Collaboration on Github: A Social Network Analysis

Guardat en:
Dades bibliogràfiques
Publicat a:Journal of Global Information Management vol. 33, no. 1 (2025), p. 1-25
Autor principal: Zhang, Guoying
Altres autors: Schuessler, Joseph H., Shao, Chris Y.
Publicat:
IGI Global
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3239807600
003 UK-CbPIL
022 |a 1062-7375 
024 7 |a 10.4018/JGIM.387412  |2 doi 
035 |a 3239807600 
045 2 |b d20250101  |b d20250131 
084 |a 10811  |2 nlm 
100 1 |a Zhang, Guoying  |u Midwestern State University, USA 
245 1 |a Small-World Phenomenon of Global Open-Source Software Collaboration on Github: A Social Network Analysis 
260 |b IGI Global  |c 2025 
513 |a Journal Article 
520 3 |a This study employs social network analysis to investigate the dynamics of collaboration regarding open-source software development on GitHub. Specifically, the study focuses on collaboration among various economies as defined by the International Organization for Standardization in ISO 3166-1 (2020). Collaboration data, such as Git pulls and pushes from the GitHub Innovation Graph from 2020 to 2023, were adopted as primary sources. Around 190 eligible economies were included in the analysis based on their collaboration efforts. The study constructed a directed, weighted network to map these collaborations, identify key economies, and validate the small-world phenomenon discussed by Watts and Strogatz in 1998. Network centrality statistics were summarized, and network communities were identified. The small-world phenomenon was validated by benchmarking the small-worldness index proposed by Humphries and Gurney in 2008. Furthermore, this study shows that variations in developer counts, repository volumes, or organization presence do not significantly influence an economy's centrality measures, such as closeness and eigenvector centralities. 
653 |a Collaboration 
653 |a Social networks 
653 |a Open source software 
653 |a Social dynamics 
653 |a International standards 
653 |a Social network analysis 
653 |a Network centrality 
653 |a Software 
653 |a Network analysis 
653 |a Eigenvectors 
653 |a Standardization 
653 |a Public domain 
653 |a Closeness 
653 |a Innovations 
653 |a International organizations 
653 |a Software development 
653 |a Statistics 
653 |a Social 
700 1 |a Schuessler, Joseph H.  |u Tarleton State University, USA 
700 1 |a Shao, Chris Y.  |u Tarleton State University, USA 
773 0 |t Journal of Global Information Management  |g vol. 33, no. 1 (2025), p. 1-25 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3239807600/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3239807600/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch