Neural Network-Based Estimation of Rebar Deflection for Robotic Rebar Installation of Vertical Structures

-д хадгалсан:
Номзүйн дэлгэрэнгүй
-д хэвлэсэн:ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction vol. 42 (2025), p. 26-34
Үндсэн зохиолч: Cai, Hongjie
Бусад зохиолчид: Hu, Rongbo, Quek, Ser Tong, Chae, Soungho, Yeoh, Justin K W
Хэвлэсэн:
IAARC Publications
Нөхцлүүд:
Онлайн хандалт:Citation/Abstract
Full Text - PDF
Шошгууд: Шошго нэмэх
Шошго байхгүй, Энэхүү баримтыг шошголох эхний хүн болох!

MARC

LEADER 00000nab a2200000uu 4500
001 3240508122
003 UK-CbPIL
035 |a 3240508122 
045 2 |b d20250101  |b d20251231 
084 |a 180234  |2 nlm 
100 1 |a Cai, Hongjie  |u Dept. of Civil and Environmental Engineering, National University of Singapore, Singapore 
245 1 |a Neural Network-Based Estimation of Rebar Deflection for Robotic Rebar Installation of Vertical Structures 
260 |b IAARC Publications  |c 2025 
513 |a Journal Article 
520 3 |a In construction, most existing research on rebar placement focuses on guardrail system for large-scale planar slabs or multi robot arm system for off-site rebar cage assembly, frequently utilizing gantry systems. However, their substantial setup time and spatial requirements greatly reduce their suitability for smaller-scale or more spatially constrained tings. This is particularly pronounced in on-site application where the rebar installation of vertical structural elements occurs in fragmented and restricted workspaces, limiting the applicability of existing guardrails or multiple robotic systems. To address this gap, this study investigates the feasibility of employing a single arm robotic system to grasp and position rebar for vertical structural components. One critical challenge in this context is to account for rebar deflection during rebar placement operations. Moreover, existing analytical equations do not provide sufficiently accurate deflection estimates. To address this problem, a neural network model was developed to predict rebar deflection across a range of sizes and lengths, allowing the robot to adapt its position dynamically according to the target location. The proposed model achieved an R? accuracy of 0.9714 and outperformed other models in both the +0.01m and +0.092m thresholds, demonstrating its effectiveness in providing precise deflection estimates. This level of precision facilitates efficient robotic rebar placement using a single-arm system. system. 
653 |a Rebar 
653 |a Placement 
653 |a Neural networks 
653 |a Grasping (robotics) 
653 |a Robot arms 
653 |a Guide rails 
653 |a Estimates 
653 |a Position (location) 
653 |a Vertical orientation 
653 |a Structural members 
653 |a Feasibility studies 
653 |a Robotics 
653 |a Deflection 
700 1 |a Hu, Rongbo  |u Kajima Technical Research Institute Singapore, Kajima Corp, Singapore 
700 1 |a Quek, Ser Tong  |u Dept. of Civil and Environmental Engineering, National University of Singapore, Singapore 
700 1 |a Chae, Soungho  |u Kajima Technical Research Institute Singapore, Kajima Corp, Singapore 
700 1 |a Yeoh, Justin K W  |u Dept. of Civil and Environmental Engineering, National University of Singapore, Singapore 
773 0 |t ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction  |g vol. 42 (2025), p. 26-34 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3240508122/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3240508122/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch