On-site Semantic Mapping and Waypoint Planning for Autonomous Aerial Bridge Monitoring

Guardado en:
Detalles Bibliográficos
Publicado en:ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction vol. 42 (2025), p. 1221-1228
Autor principal: Kim, Yohan
Otros Autores: Paik, Sunwoong, Kim, Hyoungkwan
Publicado:
IAARC Publications
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3240508633
003 UK-CbPIL
035 |a 3240508633 
045 2 |b d20250101  |b d20251231 
084 |a 180234  |2 nlm 
100 1 |a Kim, Yohan  |u School of Civil and Environmental Engineering, Yonsei University, Republic of Korea 
245 1 |a On-site Semantic Mapping and Waypoint Planning for Autonomous Aerial Bridge Monitoring 
260 |b IAARC Publications  |c 2025 
513 |a Journal Article 
520 3 |a Effective monitoring of aging bridges is critical for ensuring their safety and maintenance. This study introduces a framework for on-site autonomous aerial bridge monitoring using sensor fusion and SLAM (Simultaneous Localization and Mapping). The proposed method utilizes a lightweight LiDAR sensor and a mini PC onboard a drone to generate real-time 3D semantic maps and flight waypoints. YOLOv8-based image segmentation is employed to identify bridge components, achieving a mean Average Precision (mAP50-95) of 86.6% across test data. Segmentation requires less than 10 milliseconds per frame, while processing LiDAR point clouds takes less than 1 second per frame. Waypoint generation based on the semantic map is completed in under 3 seconds. These results demonstrate the framework's capability to deliver precise and reliable on-site monitoring. This system provides a significant advancement in autonomous aerial bridge inspection by enabling efficient and real-time operation. 
653 |a Onsite 
653 |a Simultaneous localization and mapping 
653 |a Semantics 
653 |a Waypoints 
653 |a Real time operation 
653 |a Monitoring 
653 |a Lidar 
653 |a Bridge maintenance 
653 |a Image segmentation 
653 |a Bridge inspection 
653 |a Cameras 
653 |a Accuracy 
653 |a Deep learning 
653 |a Planning 
653 |a Aging 
653 |a Calibration 
653 |a Sensors 
653 |a Methods 
653 |a Algorithms 
653 |a Automation 
653 |a Localization 
653 |a Traveling salesman problem 
653 |a Robotics 
700 1 |a Paik, Sunwoong  |u School of Civil and Environmental Engineering, Yonsei University, Republic of Korea 
700 1 |a Kim, Hyoungkwan  |u School of Civil and Environmental Engineering, Yonsei University, Republic of Korea 
773 0 |t ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction  |g vol. 42 (2025), p. 1221-1228 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3240508633/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3240508633/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch