GPU-Accelerated Collision-Free Path Planning for Multi- Axis Robots in Construction Automation

Guardat en:
Dades bibliogràfiques
Publicat a:ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction vol. 42 (2025), p. 421-428
Autor principal: Vukorep, Ilija
Altres autors: Starke, Rolf, Khajehee, Arastoo, Rogeau, Nicolas, Ikeda, Yasushi
Publicat:
IAARC Publications
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3240508634
003 UK-CbPIL
035 |a 3240508634 
045 2 |b d20250101  |b d20251231 
084 |a 180234  |2 nlm 
100 1 |a Vukorep, Ilija  |u Faculty of Architecture, Civil Engineering and Urban Planning, BTU Cottbus-Senftenberg, Germany 
245 1 |a GPU-Accelerated Collision-Free Path Planning for Multi- Axis Robots in Construction Automation 
260 |b IAARC Publications  |c 2025 
513 |a Journal Article 
520 3 |a The Architecture, Engineering, and Construction (AEC) sector faces increasing pressure for higher production rates amidst a growing shortage of skilled labor, driving the demand for advanced robotic applications to enhance precision, efficiency, and adaptability in complex environments. This paper introduces a software setup designed to ensure collision-free movements for multi-axis robots in AEC scenarios. Our approach leverages the NVIDIA cuRobo framework's robust capabilities, seamlessly integrated with Grasshopper for Rhino 3D software (GH), a tool widely recognized for its versatility in parametric design. The integration of these technologies allows for the efficient online generation of optimal path movements, avoiding collisions even in highly intricate settings and changing environments. This is achieved in a remarkably short timeframe, enhancing productivity and reducing downtime. NVIDIAs framework's GPU-driven architecture paired with our GH parametric and controlling setup is a significant advancement, validated through a case study involving a complex, tree-like structure constructed from timber sticks. Using a six-axis robotic arm, the study demonstrates the system's capability to navigate and manipulate within congested spaces efficiently. With this enhanced automation workflow, new possibilities emerge for robotic applications, from industrial automation to sophisticated construction projects. Our GH software also allows visualization and exchange with URDF-models and better planning of collision logic, which was previously only possible with ROS and Nvidia Isaac technology. 
653 |a Robotics 
653 |a Software 
653 |a Collision avoidance 
653 |a Timber construction 
653 |a Automation 
653 |a Graphics processing units 
653 |a Robot arms 
653 |a Path planning 
653 |a Changing environments 
700 1 |a Starke, Rolf  |u Faculty of Architecture, Civil Engineering and Urban Planning, BTU Cottbus-Senftenberg, Germany 
700 1 |a Khajehee, Arastoo  |u Department of Architecture, Graduate School of Engineering, The University of Tokyo, Japan 
700 1 |a Rogeau, Nicolas  |u Department of Architecture, Graduate School of Engineering, The University of Tokyo, Japan 
700 1 |a Ikeda, Yasushi  |u Department of Architecture, Graduate School of Engineering, The University of Tokyo, Japan 
773 0 |t ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction  |g vol. 42 (2025), p. 421-428 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3240508634/abstract/embedded/ITVB7CEANHELVZIZ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3240508634/fulltextPDF/embedded/ITVB7CEANHELVZIZ?source=fedsrch