Algorithm development for automatic detection of progressive damage in tunnel cross-sectional geometry

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction vol. 42 (2025), p. 1494-1501
Egile nagusia: Nuñez, Christopher
Beste egile batzuk: Regalado, Marck
Argitaratua:
IAARC Publications
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3240508706
003 UK-CbPIL
035 |a 3240508706 
045 2 |b d20250101  |b d20251231 
084 |a 180234  |2 nlm 
100 1 |a Nuñez, Christopher 
245 1 |a Algorithm development for automatic detection of progressive damage in tunnel cross-sectional geometry 
260 |b IAARC Publications  |c 2025 
513 |a Journal Article 
520 3 |a Accurate assessment of tunnel conditions is vital for ensuring long-term safety and structural integrity, particularly in weak rock masses with complex geological conditions. This study introduces a methodology to analyze tunnel deformation and potential damage using point cloud data acquired in 2019, 2022, and 2024 through terrestrial laser scanning (TLS). The datasets were processed to remove outliers, irrelevant elements, and internal features, resulting in a clean representation of the tunnel's geometry. A novel algorithm integrates point cloud segmentation, centerline alignment, and projection techniques to derive tunnel profiles and monitor structural changes over time. The results demonstrate TLS's effectiveness in capturing high-resolution data for ovalization monitoring, revealing a consistent reduction in cross-sectional area throughout the tunnel and a rightward shift in the 2024 profiles. This approach underscores the potential of TLS for precise structural monitoring and deformation analysis in challenging environments. 
653 |a Outliers (statistics) 
653 |a Damage detection 
653 |a Algorithms 
653 |a Tunnels 
653 |a Deformation analysis 
653 |a Data acquisition 
653 |a Weak rock 
653 |a Monitoring 
653 |a Image segmentation 
653 |a Structural integrity 
653 |a Outliers (landforms) 
653 |a Datasets 
653 |a Photogrammetry 
653 |a Scanners 
653 |a Lasers 
653 |a Civil engineering 
653 |a Data processing 
653 |a Unmanned aerial vehicles 
653 |a Automation 
653 |a Deformation 
653 |a Geometry 
653 |a Robotics 
653 |a Geology 
700 1 |a Regalado, Marck 
773 0 |t ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction  |g vol. 42 (2025), p. 1494-1501 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3240508706/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3240508706/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch