Development of a Fall Detection and Safety Communication System Using Small Language Models

Guardado en:
Detalles Bibliográficos
Publicado en:ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction vol. 42 (2025), p. 588-595
Autor principal: Kankanamge, Malithi Wanniarachchi
Otros Autores: Shahid, Abdur R, Yang, Ning, Uddin, S M Jamil, Biswas, Rahul
Publicado:
IAARC Publications
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3240508876
003 UK-CbPIL
035 |a 3240508876 
045 2 |b d20250101  |b d20251231 
084 |a 180234  |2 nlm 
100 1 |a Kankanamge, Malithi Wanniarachchi  |u School of Computing, Southern Illinois University, Carbondale, IL, USA 
245 1 |a Development of a Fall Detection and Safety Communication System Using Small Language Models 
260 |b IAARC Publications  |c 2025 
513 |a Journal Article 
520 3 |a Fall incidents are a leading cause of injuries and fatalities in the construction industry, significantly impacting worker safety and productivity. Although many Al-based automated fall detection methods have been introduced, existing systems lack continuous communication support and often fail to address critical scenarios such as isolated work zones or high-risk tasks involving limited oversights. To address these limitations, this study proposes a new fall detection system for the construction industry using small language models (SLMs). Incorporating real-time conversation support within the system improves communication with emergency care teams and increases its utility in high-risk environments. We present the system architecture, integrate lightweight machine learning models, and evaluate the system's performance using the TinyLlama and Phi-3 models. Our assessment, which emphasizes relevance, correctness, and response speed, provides essential insights into effectively integrating language models into high-reliability systems for the construction industry. 
653 |a Communications systems 
653 |a Fall detection 
653 |a System reliability 
653 |a Machine learning 
653 |a Real time 
653 |a Occupational safety 
653 |a Construction industry 
653 |a Language 
653 |a Emergency medical care 
653 |a Workers 
653 |a Cameras 
653 |a Fatalities 
653 |a Artificial intelligence 
653 |a Teams 
653 |a Computer vision 
653 |a Verbal communication 
653 |a Sensors 
653 |a Emergency communications systems 
653 |a At risk populations 
653 |a Automation 
653 |a Surveillance 
653 |a Supervisors 
653 |a Robotics 
700 1 |a Shahid, Abdur R  |u School of Computing, Southern Illinois University, Carbondale, IL, USA 
700 1 |a Yang, Ning  |u School of Computing, Southern Illinois University, Carbondale, IL, USA 
700 1 |a Uddin, S M Jamil  |u Department of Construction Management, Colorado State University, USA 
700 1 |a Biswas, Rahul  |u Faculty of Engineering, Rangamati Science and Technology University, Bangladesh 
773 0 |t ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction  |g vol. 42 (2025), p. 588-595 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3240508876/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3240508876/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch