A Synthetic Data Generation Pipeline for Point-Cloud-Based Rebar Segmentation
שמור ב:
| הוצא לאור ב: | ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction vol. 42 (2025), p. 1137-1143 |
|---|---|
| מחבר ראשי: | |
| מחברים אחרים: | , |
| יצא לאור: |
IAARC Publications
|
| נושאים: | |
| גישה מקוונת: | Citation/Abstract Full Text - PDF |
| תגים: |
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3240508902 | ||
| 003 | UK-CbPIL | ||
| 035 | |a 3240508902 | ||
| 045 | 2 | |b d20250101 |b d20251231 | |
| 084 | |a 180234 |2 nlm | ||
| 100 | 1 | |a Sun, Tao |u Department of Civil Engineering, McGill University, Canada | |
| 245 | 1 | |a A Synthetic Data Generation Pipeline for Point-Cloud-Based Rebar Segmentation | |
| 260 | |b IAARC Publications |c 2025 | ||
| 513 | |a Journal Article | ||
| 520 | 3 | |a Automated rebar cage assembly and quality inspection require reliable rebar recognition. Although rebar segmentation from point clouds has been extensively studied, its generalizability remains limited. One key challenge is the scarcity of real data for training the segmentation models. To address this issue, we propose, for the first time, a pipeline for generating synthetic data for the rebar point cloud instance segmentation task. Using this pipeline, we applied the state-of-the-art Oneformer3d on rebar mesh instance segmentation. The model trained on our synthetic dataset achieved 92.1 mAP in real-world experiments, showing strong synthetic-to-real transfer capability. By eliminating the need for manual data collection and annotation, the proposed method facilitates advancements in automated rebar cage assembly and dimensional quality inspection technologies. | |
| 653 | |a Rebar | ||
| 653 | |a Instance segmentation | ||
| 653 | |a Cages | ||
| 653 | |a Inspection | ||
| 653 | |a Image segmentation | ||
| 653 | |a Data collection | ||
| 653 | |a Synthetic data | ||
| 653 | |a Software | ||
| 653 | |a Cameras | ||
| 653 | |a Accuracy | ||
| 653 | |a Datasets | ||
| 653 | |a Computer vision | ||
| 653 | |a Experiments | ||
| 653 | |a Batch processing | ||
| 653 | |a Algorithms | ||
| 653 | |a Automation | ||
| 653 | |a Annotations | ||
| 653 | |a Robotics | ||
| 700 | 1 | |a Luo, Yingtong |u Department of Mechanical Engineering, McGill University, Canada | |
| 700 | 1 | |a Shao, Yi |u Department of Civil Engineering, McGill University, Canada | |
| 773 | 0 | |t ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction |g vol. 42 (2025), p. 1137-1143 | |
| 786 | 0 | |d ProQuest |t Advanced Technologies & Aerospace Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3240508902/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3240508902/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch |