A Synthetic Data Generation Pipeline for Point-Cloud-Based Rebar Segmentation

שמור ב:
מידע ביבליוגרפי
הוצא לאור ב:ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction vol. 42 (2025), p. 1137-1143
מחבר ראשי: Sun, Tao
מחברים אחרים: Luo, Yingtong, Shao, Yi
יצא לאור:
IAARC Publications
נושאים:
גישה מקוונת:Citation/Abstract
Full Text - PDF
תגים: הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!

MARC

LEADER 00000nab a2200000uu 4500
001 3240508902
003 UK-CbPIL
035 |a 3240508902 
045 2 |b d20250101  |b d20251231 
084 |a 180234  |2 nlm 
100 1 |a Sun, Tao  |u Department of Civil Engineering, McGill University, Canada 
245 1 |a A Synthetic Data Generation Pipeline for Point-Cloud-Based Rebar Segmentation 
260 |b IAARC Publications  |c 2025 
513 |a Journal Article 
520 3 |a Automated rebar cage assembly and quality inspection require reliable rebar recognition. Although rebar segmentation from point clouds has been extensively studied, its generalizability remains limited. One key challenge is the scarcity of real data for training the segmentation models. To address this issue, we propose, for the first time, a pipeline for generating synthetic data for the rebar point cloud instance segmentation task. Using this pipeline, we applied the state-of-the-art Oneformer3d on rebar mesh instance segmentation. The model trained on our synthetic dataset achieved 92.1 mAP in real-world experiments, showing strong synthetic-to-real transfer capability. By eliminating the need for manual data collection and annotation, the proposed method facilitates advancements in automated rebar cage assembly and dimensional quality inspection technologies. 
653 |a Rebar 
653 |a Instance segmentation 
653 |a Cages 
653 |a Inspection 
653 |a Image segmentation 
653 |a Data collection 
653 |a Synthetic data 
653 |a Software 
653 |a Cameras 
653 |a Accuracy 
653 |a Datasets 
653 |a Computer vision 
653 |a Experiments 
653 |a Batch processing 
653 |a Algorithms 
653 |a Automation 
653 |a Annotations 
653 |a Robotics 
700 1 |a Luo, Yingtong  |u Department of Mechanical Engineering, McGill University, Canada 
700 1 |a Shao, Yi  |u Department of Civil Engineering, McGill University, Canada 
773 0 |t ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction  |g vol. 42 (2025), p. 1137-1143 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3240508902/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3240508902/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch