Leveraging Large Language Models and Expert Techniques for Path Selection

Guardado en:
Detalles Bibliográficos
Publicado en:ProQuest Dissertations and Theses (2025)
Autor principal: Zhu, Samuel Jiarong
Publicado:
ProQuest Dissertations & Theses
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3240609477
003 UK-CbPIL
020 |a 9798290969909 
035 |a 3240609477 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Zhu, Samuel Jiarong 
245 1 |a Leveraging Large Language Models and Expert Techniques for Path Selection 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a Although symbolic execution is a powerful tool for vulnerability analysis, it is frequently hampered by the path explosion issue. Previous attempts to reduce the search space caused by path explosion have focused on pruning infeasible paths and comparing states. Machine learning has also been used to train a model to prune the search space of states. The rise of generalized Large Language Models (LLMs) provides an opportunity to avoid this cumbersome training process. LLMs have been shown to be very effective in the field of code analysis. This paper demonstrates a technique to use LLMs, paired with techniques derived from observing human experts, in order to perform effective symbolic execution by using path selection. This paper creates a framework to integrate an LLM with a symbolic execution process and measures its effects compared to an existing symbolic execution engine, angr. The results show that the LLM performs equivalent to or better compared to existing methods when comparing the number of logical branches taken. By demonstrating this approach’s effectiveness, this paper opens an opportunity for further expansion of the usage of LLMs within symbolic execution.  
653 |a Computer science 
653 |a Computer engineering 
653 |a Information technology 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3240609477/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3240609477/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch