Advancing Precision Livestock Farming: Integrating Hybrid AI, IoT, Cloud and Edge Computing for Enhanced Welfare and Efficiency

محفوظ في:
التفاصيل البيبلوغرافية
الحاوية / القاعدة:International Journal of Advanced Computer Science and Applications vol. 16, no. 7 (2025)
المؤلف الرئيسي: PDF
منشور في:
Science and Information (SAI) Organization Limited
الموضوعات:
الوصول للمادة أونلاين:Citation/Abstract
Full Text - PDF
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!

MARC

LEADER 00000nab a2200000uu 4500
001 3240918329
003 UK-CbPIL
022 |a 2158-107X 
022 |a 2156-5570 
024 7 |a 10.14569/IJACSA.2025.0160732  |2 doi 
035 |a 3240918329 
045 2 |b d20250101  |b d20251231 
100 1 |a PDF 
245 1 |a Advancing Precision Livestock Farming: Integrating Hybrid AI, IoT, Cloud and Edge Computing for Enhanced Welfare and Efficiency 
260 |b Science and Information (SAI) Organization Limited  |c 2025 
513 |a Journal Article 
520 3 |a Poultry farming is pivotal to global food security, yet maintaining optimal environmental and operational conditions remains a challenge. Suboptimal conditions, such as high temperature and humidity, promote bacterial growth and the production of toxic gases like ammonia (NH3), carbon monoxide (CO), carbon dioxide (CO2), methane (CH4), and hydrogen sulfide (H2S), which increase poultry disease and mortality rates. This study introduces an innovative, modular, and scalable system integrating Artificial Intelligence (AI), Internet of Things (IoT), Edge Computing, and Cloud Computing for real-time monitoring, prediction, and automation in poultry barns. The system employs a hybrid AI framework combining Gradient Boosting techniques (XGBoost, LightGBM, CatBoost) and Long Short-Term Memory (LSTM) networks to analyze data from a heterogeneous wireless sensor network. It monitors critical parameters—temperature, humidity, and toxic gas concentrations—while predicting environmental conditions and detecting potential stress to optimize poultry welfare. Leveraging IoT for data collection, Edge Computing for low-latency processing, and cloud analytics for advanced insights, the system enhances decision-making, reduces feed wastage, lowers energy costs, and decreases mortality rates. A case study demonstrates significant improvements in prediction accuracy, operational efficiency, and animal welfare, underscoring the framework’s adaptability across diverse agricultural settings. This work establishes a robust precedent for hybrid AI-driven smart farming solutions, advancing precision livestock farming. 
653 |a Humidity 
653 |a Internet of Things 
653 |a Poultry farming 
653 |a Mortality 
653 |a Wireless sensor networks 
653 |a Edge computing 
653 |a Carbon dioxide 
653 |a High temperature 
653 |a Data collection 
653 |a Hydrogen sulfide 
653 |a Animal welfare 
653 |a Farming 
653 |a Artificial intelligence 
653 |a Energy costs 
653 |a Modular systems 
653 |a Cloud computing 
653 |a Ammonia 
653 |a Optimization 
653 |a Network latency 
653 |a Real time 
653 |a Carbon monoxide 
653 |a Poultry 
653 |a Livestock 
773 0 |t International Journal of Advanced Computer Science and Applications  |g vol. 16, no. 7 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3240918329/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3240918329/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch