Evaluating and Interpreting Pooling Techniques in Spectrogram-Based Audio Analysis Using Diverse Metrics

Guardado en:
Detalles Bibliográficos
Publicado en:International Journal of Advanced Computer Science and Applications vol. 16, no. 7 (2025)
Autor principal: PDF
Publicado:
Science and Information (SAI) Organization Limited
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:Audio analysis is a rapidly advancing field that spans various domains, including speech, music, and environmental sound data. Using spectrograms with Convolutional Neural Networks (CNNs) enables the visualization and extraction of critical audio features by combining time-frequency representations with deep learning. Pooling plays a crucial role in this process, as it reduces dimensionality while retaining essential information. However, existing evaluations of pooling methods primarily emphasize downstream task performance, such as classification accuracy, often overlooking their effectiveness in preserving critical signal features. To address this gap, we use 17 distinct metrics, categorized into four domains, to comprehensively assess various pooling operations. Furthermore, we explore the underex-amined relationship between specific pooling techniques and their impact on feature retention across diverse audio applications. Our analysis encompasses spectrograms from three audio domains (speech, music, and environmental sound), identifying their key characteristics, and grouping them accordingly. Using this setup, we evaluate the performance of 12 pooling methods across these applications. By investigating the features critical to each task and evaluating how well different pooling techniques preserve them, we give insights into their suitability for specific applications. This work aims to guide researchers in selecting the most appropriate pooling strategies for their applications, enabling more granular evaluations, improving explainability, and thereby advancing the precision and efficiency of audio analysis pipelines.
ISSN:2158-107X
2156-5570
DOI:10.14569/IJACSA.2025.0160795
Fuente:Advanced Technologies & Aerospace Database