Role of Artificial Intelligence in Health Care and Research

Enregistré dans:
Détails bibliographiques
Publié dans:Asian Journal of Nursing Education and Research vol. 15, no. 2 (Apr-Jun 2025), p. 111-119
Auteur principal: Mohanasundari, S K
Publié:
A&V Publications
Sujets:
Accès en ligne:Citation/Abstract
Full Text
Full Text - PDF
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3240949432
003 UK-CbPIL
022 |a 2231-1149 
022 |a 2349-2996 
024 7 |a 10.52711/2349-2996.2025.00025  |2 doi 
035 |a 3240949432 
045 2 |b d20250401  |b d20250630 
084 |a 169234  |2 nlm 
100 1 |a Mohanasundari, S K  |u Assistant Professor, College of Nursing, ATIMS Bibinagar. 
245 1 |a Role of Artificial Intelligence in Health Care and Research 
260 |b A&V Publications  |c Apr-Jun 2025 
513 |a Journal Article 
520 3 |a Artificial Intelligence (AI) has revolutionized healthcare by simulating human intelligence to enhance diagnostics, treatment planning, and operational efficiency. Over the decades, AI has evolved through key milestones, from early expert systems like MYCIN to advanced deep learning applications in radiology, pathology, and genomics. Today, AI-driven tools improve disease detection, personalize treatment, assist in robotic surgeries, and automate administrative processes, ultimately enhancing patient outcomes. AI also accelerates drug discovery, supports real-time ICU monitoring, and enables predictive analytics for proactive healthcare management. However, challenges such as data privacy, algorithmic bias, over-reliance on AI, and regulatory concerns must be addressed to ensure ethical and equitable implementation. While AI cannot replace human judgment and empathy, it serves as a powerful adjunct to clinical decision-making, improving accuracy, efficiency, and accessibility in healthcare. Thoughtful integration of Al can bridge gaps in healthcare delivery, fostering a future of data-driven, patient-centered medical care. 
610 4 |a Google DeepMind 
653 |a Robotic surgery 
653 |a Drug development 
653 |a Automation 
653 |a Artificial intelligence 
653 |a Pathology 
653 |a Behavior Modification 
653 |a Decision Support Systems 
653 |a Patients 
653 |a Influence of Technology 
653 |a Computers 
653 |a Cancer 
653 |a Cognitive Restructuring 
653 |a Mental Health Programs 
653 |a Radiology 
653 |a Empathy 
653 |a At Risk Persons 
653 |a Chronic Illness 
653 |a Accuracy 
653 |a Anesthesiology 
653 |a Medical Services 
653 |a Genetic Disorders 
653 |a Decision Making Skills 
653 |a Diabetes 
653 |a Health Behavior 
653 |a Delivery Systems 
653 |a Internal Medicine 
653 |a Algorithms 
773 0 |t Asian Journal of Nursing Education and Research  |g vol. 15, no. 2 (Apr-Jun 2025), p. 111-119 
786 0 |d ProQuest  |t Nursing & Allied Health Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3240949432/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3240949432/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3240949432/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch