A Cutting-Edge Approach to Multi-UAV Mission Planning Using Enhanced Constraint Satisfaction

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Intelligent & Robotic Systems vol. 111, no. 3 (Sep 2025), p. 95
Autor principal: Ayvaz, Emre
Otros Autores: Atay, Yılmaz, Babaoğlu, İsmail
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3241056326
003 UK-CbPIL
022 |a 0921-0296 
022 |a 1573-0409 
024 7 |a 10.1007/s10846-025-02279-4  |2 doi 
035 |a 3241056326 
045 2 |b d20250901  |b d20250930 
084 |a 137834  |2 nlm 
100 1 |a Ayvaz, Emre  |u Konya Technical University, Department of Computer Engineering, Konya, Turkey (GRID:grid.505922.9) 
245 1 |a A Cutting-Edge Approach to Multi-UAV Mission Planning Using Enhanced Constraint Satisfaction 
260 |b Springer Nature B.V.  |c Sep 2025 
513 |a Journal Article 
520 3 |a Multi-task planning for diverse UAVs and missions can be approached as a Constraint Satisfaction Problem (CSP) where the Temporal CSP (TCSP) method adds time-based sequential task modeling. The Enhanced Temporal Constraint Satisfaction Problem (ETCSP) method innovatively merges dynamic domain features with a MIQP (Mixed Integer Quadratic Programming) based scoring system to optimally assign UAVs to tasks, moving beyond traditional greedy algorithms. This approach includes an enhanced forward checking method that evaluates task suitability and UAV compatibility in real-time using dynamic programming, thus refining search precision. The ETCSP model was tested in two phases, initially assigning various tasks and then employing CSP methods to monitor task changes over time. Results show that the generic TCSP method requires 61 UAVs to complete 70 tasks, while the Enhanced TCSP achieves the same with only 48 UAVs—which is roughly a 21% reduction in UAV usage. Similarly, the Enhanced method completes the task package in about 3800 min and with 1142 L of fuel, compared to 4855 min and 1615 L for the TCSP method, translating to approximately a 22% reduction in time and a 29% reduction in fuel consumption. 
653 |a Dynamic programming 
653 |a Mixed integer 
653 |a Real time 
653 |a Constraints 
653 |a Fuel consumption 
653 |a Energy consumption 
653 |a Mission planning 
653 |a Quadratic programming 
653 |a Greedy algorithms 
700 1 |a Atay, Yılmaz  |u Gazi University, Department of Computer Engineering, Ankara, Turkey (GRID:grid.25769.3f) (ISNI:0000 0001 2169 7132) 
700 1 |a Babaoğlu, İsmail  |u Konya Technical University, Department of Computer Engineering, Konya, Turkey (GRID:grid.505922.9) 
773 0 |t Journal of Intelligent & Robotic Systems  |g vol. 111, no. 3 (Sep 2025), p. 95 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3241056326/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3241056326/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch