Robust 3D Content Generation With Acquisition Aware Frame Selection for Gaussian Splatting

Guardat en:
Dades bibliogràfiques
Publicat a:ProQuest Dissertations and Theses (2025)
Autor principal: Sijan, Asif
Publicat:
ProQuest Dissertations & Theses
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3241229778
003 UK-CbPIL
020 |a 9798291502969 
035 |a 3241229778 
045 2 |b d20250101  |b d20251231 
084 |a 66569  |2 nlm 
100 1 |a Sijan, Asif 
245 1 |a Robust 3D Content Generation With Acquisition Aware Frame Selection for Gaussian Splatting 
260 |b ProQuest Dissertations & Theses  |c 2025 
513 |a Dissertation/Thesis 
520 3 |a Generating three-dimensional (3D) content is pivotal for a wide range of applications across various domains, including entertainment, cultural preservation, virtual reality or augmented reality education environments, as well as medical training spaces. Traditional methods for 3D content generation are time consuming, require expertise and can be expensive. The recent emergence of Radiance Field methods in computer graphics has revolutionized the 3D content generation pipeline. Among these, 3D Gaussian Splatting (3DGS) has been considered to be an effective tool for high-fidelity scene reconstruction. This study evaluates the effectiveness of the 3DGS technique for generating realistic 3D content and examines various data acquisition techniques that enhance its robustness. Furthermore, we propose a novel sharpness-guided, overlap-constrained frame selection algorithm that improves both reconstruction quality and computational efficiency. Our framework demonstrates significant performance gains for the computation required with 3DGS, particularly with large-scale datasets—reducing the COLMAP preprocessing time by up to 32.2× and improving reconstruction quality, with PSNR scores increasing by up to 13.86%. In general, radiance field techniques, like 3DGS, are approachable content generation techniques capable of recreating specific spaces. Computational improvements and informed acquisition techniques can help guide that progress. 
653 |a Computer science 
653 |a Statistics 
653 |a Artificial intelligence 
653 |a Information technology 
773 0 |t ProQuest Dissertations and Theses  |g (2025) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3241229778/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3241229778/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch