Organotin(IV) Alkoxides, Siloxides, and Related Stannoxanes. Characterisation and Thermogravimetric Studies

Na minha lista:
Detalhes bibliográficos
Publicado no:ChemistryOpen vol. 14, no. 8 (Aug 1, 2025)
Autor principal: Penciu, Vlad
Outros Autores: Bizo, Liliana, Varga, Richard A., Someşan, Adrian‐Alexandru
Publicado em:
John Wiley & Sons, Inc.
Assuntos:
Acesso em linha:Citation/Abstract
Full Text
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3241551606
003 UK-CbPIL
022 |a 2191-1363 
024 7 |a 10.1002/open.202400494  |2 doi 
035 |a 3241551606 
045 0 |b d20250801 
084 |a 233130  |2 nlm 
100 1 |a Penciu, Vlad  |u Department of Chemistry, Supramolecular Organic and Organometallic Chemistry Centre, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania 
245 1 |a Organotin(IV) Alkoxides, Siloxides, and Related Stannoxanes. Characterisation and Thermogravimetric Studies 
260 |b John Wiley & Sons, Inc.  |c Aug 1, 2025 
513 |a Journal Article 
520 3 |a A series of C,O‐chelated organotin(IV) alkoxides, L2PhSnOtBu (4), L2PhSnOMe (6), L2Sn(OtBu)2 (11), and siloxides L2PhSnOSiPh3 (3), L2Sn(OSiPh3)2 (10) (L=[2‐(CH2O)2CH]C6H4), was prepared by salt elimination reactions. They were obtained from the organotin(IV) iodides L2PhSnI (1) or L2SnI2 (2) upon reactions with tBuOK, MeONa or Ph3SiONa, respectively, in dry THF or methanol. Under non‐inert conditions, compounds 4 and 6 undergo combined hydrolysis and condensation to give the hexaorganodistannoxane (L2PhSn)2O (5). The stannoxane 5 is easily hydrolysed to L2PhSnOH (7), which quickly converts back when heated. Basic hydrolysis of diiodide 2 produces the cyclic oxide (L2SnO)3 (8). Its reaction with an equimolar amount of Ph3SiONa gives only a mixture of the expected L2SnI(OSiPh3) (9), 10 and the precursor, 2. Yet, 8 shows a unique reactivity pattern when combine with m‐tolyl boronic acid, affording stannaboroxane (L2SnO)2OB(m‐tol) (12). All the isolated species were characterised in solution by NMR spectroscopy and mass spectrometry. The solid‐state molecular structures of 1–5, 10–12 were established by single‐crystal X‐ray diffraction (XRD). Additionally, thermogravimetric analysis of 3–5, 8, 10, and 12 was conducted. 
653 |a Mass spectrometry 
653 |a Ligands 
653 |a Hydrolysis 
653 |a Basic converters 
653 |a Alkoxides 
653 |a Basic oxides 
653 |a Thermogravimetric analysis 
653 |a Molecular structure 
653 |a NMR spectroscopy 
700 1 |a Bizo, Liliana  |u Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania 
700 1 |a Varga, Richard A.  |u Department of Chemistry, Supramolecular Organic and Organometallic Chemistry Centre, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania 
700 1 |a Someşan, Adrian‐Alexandru  |u Department of Chemistry, Supramolecular Organic and Organometallic Chemistry Centre, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania 
773 0 |t ChemistryOpen  |g vol. 14, no. 8 (Aug 1, 2025) 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3241551606/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3241551606/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3241551606/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch