A Comprehensive Survey on Subspace Clustering: Methods and Applications

Uloženo v:
Podrobná bibliografie
Vydáno v:The Artificial Intelligence Review vol. 58, no. 11 (Nov 2025), p. 346
Hlavní autor: Miao, Jianyu
Další autoři: Zhang, Xiaochan, Yang, Tiejun, Fan, Chao, Tian, Yingjie, Shi, Yong, Xu, Mingliang
Vydáno:
Springer Nature B.V.
Témata:
On-line přístup:Citation/Abstract
Full Text
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3241732934
003 UK-CbPIL
022 |a 0269-2821 
022 |a 1573-7462 
024 7 |a 10.1007/s10462-025-11349-w  |2 doi 
035 |a 3241732934 
045 2 |b d20251101  |b d20251130 
084 |a 68693  |2 nlm 
100 1 |a Miao, Jianyu  |u Henan University of Technology, School of Artificial Intelligence and Big Data, Zhengzhou, China (GRID:grid.412099.7) (ISNI:0000 0001 0703 7066) 
245 1 |a A Comprehensive Survey on Subspace Clustering: Methods and Applications 
260 |b Springer Nature B.V.  |c Nov 2025 
513 |a Journal Article 
520 3 |a As a pivotal strategy to deal with complicated and high-dimensional data, subspace clustering is to find a set of subspaces of a high-dimensional space and then partition each data point in dataset into the corresponding subspace. This field has witnessed remarkable progress over recent decades, with substantial theoretical advancements and successful applications spanning image processing, genomic analysis and text analysis. However, existing surveys predominantly focus on conventional shallow-structured methods, with few up-to-date reviews on deep-structured methods, i.e., deep neural network-based approaches. In fact, recent years has witnessed the overwhelming success of deep neural network in various fields, including computer vision, natural language processing, subspace clustering. To address this gap, this paper presents a comprehensive review on subspace clustering methods, including conventional shallow-structured and deep neural network based approaches, which systematically analyzes over 150 papers published in peer-reviewed journals and conferences, highlighting the latest research achievements, methods, algorithms and applications. Specifically, we first briefly introduce the basic principles and evolution of subspace clustering. Subsequently, we present an overview of research on subspace clustering, dividing the existing works into two categories: shallow subspace clustering and deep subspace clustering, based on the model architecture. Within each category, we introduce a refined taxonomy distinguishing linear and nonlinear approaches based on data characteristics and subspace structural assumptions. Finally, we discuss the challenges currently faced and future research direction for development in the field of subspace clustering. 
653 |a Sparsity 
653 |a Subspace methods 
653 |a Clustering 
653 |a Artificial neural networks 
653 |a Decomposition 
653 |a Taxonomy 
653 |a Computer vision 
653 |a Algorithms 
653 |a Natural language processing 
653 |a Subspaces 
653 |a Image processing 
653 |a Pattern recognition 
653 |a Data points 
653 |a Application 
653 |a Classification 
653 |a Genomics 
653 |a Research 
653 |a Partition 
653 |a Text analysis 
653 |a Journals 
653 |a Networks 
653 |a Polls & surveys 
653 |a Data 
653 |a Neural networks 
700 1 |a Zhang, Xiaochan  |u Henan University of Technology, College of Information Science and Engineering, Zhengzhou, China (GRID:grid.412099.7) (ISNI:0000 0001 0703 7066) 
700 1 |a Yang, Tiejun  |u Henan University of Technology, School of Artificial Intelligence and Big Data, Zhengzhou, China (GRID:grid.412099.7) (ISNI:0000 0001 0703 7066) 
700 1 |a Fan, Chao  |u Henan University of Technology, School of Artificial Intelligence and Big Data, Zhengzhou, China (GRID:grid.412099.7) (ISNI:0000 0001 0703 7066) 
700 1 |a Tian, Yingjie  |u University of Chinese Academy of Sciences, School of Economics and Management, Beijing, China (GRID:grid.410726.6) (ISNI:0000 0004 1797 8419); Chinese Academy of Sciences, Key Laboratory of Big Data Mining and Knowledge Management, Beijing, China (GRID:grid.9227.e) (ISNI:0000 0001 1957 3309) 
700 1 |a Shi, Yong  |u University of Chinese Academy of Sciences, School of Economics and Management, Beijing, China (GRID:grid.410726.6) (ISNI:0000 0004 1797 8419); Chinese Academy of Sciences, Key Laboratory of Big Data Mining and Knowledge Management, Beijing, China (GRID:grid.9227.e) (ISNI:0000 0001 1957 3309) 
700 1 |a Xu, Mingliang  |u Zhengzhou University, School of Computer and Artificial Intelligence, Zhengzhou, China (GRID:grid.207374.5) (ISNI:0000 0001 2189 3846) 
773 0 |t The Artificial Intelligence Review  |g vol. 58, no. 11 (Nov 2025), p. 346 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3241732934/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3241732934/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3241732934/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch