Principal component conditional generative adversarial networks for imbalanced ECG classification enhancement

Uloženo v:
Podrobná bibliografie
Vydáno v:PLoS One vol. 20, no. 8 (Aug 2025), p. e0330707
Hlavní autor: Tang, Chao
Vydáno:
Public Library of Science
Témata:
On-line přístup:Citation/Abstract
Full Text
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3242333117
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0330707  |2 doi 
035 |a 3242333117 
045 2 |b d20250801  |b d20250831 
084 |a 174835  |2 nlm 
100 1 |a Tang, Chao 
245 1 |a Principal component conditional generative adversarial networks for imbalanced ECG classification enhancement 
260 |b Public Library of Science  |c Aug 2025 
513 |a Journal Article 
520 3 |a With over a century of development, electrocardiogram (ECG) diagnostics has become the preferred tool for healthcare professionals in cardiovascular disease diagnosis and monitoring. As wearable devices and mobile monitoring technologies become widespread, ECG data are trending toward diversity and long-term collection, making traditional manual annotation methods inadequate for massive data analysis demands. This research addresses core challenges in ECG signal classification—extremely imbalanced data, significant individual physiological differences, and difficulties in long sequence fitting—by proposing a Principal Component Analysis-based Conditional Generative Adversarial Network (PCA-CGAN). Through in-depth analysis of ECG signal principal component distribution characteristics, we discovered that just a few principal components can explain over 90% of signal variance, revealing the inherent inefficiency and limitations of traditional complete waveform generation methods. Based on this theoretical foundation, we shift the data augmentation paradigm from generating surface waveforms to generating high information density principal component features, resolving waveform jitter and heterogeneity issues present in traditional methods. Simultaneously, we designed a two-stage conditional encoding-decoding architecture that builds category-independent feature spaces from early training stages, fundamentally breaking the feature space bias caused by the “Matthew effect” and effectively preventing majority classes from compressing minority class features during generation. Using the Transformer’s global attention mechanism, the model precisely captures key diagnostic features of various arrhythmias, maximizing inter-class differences while maintaining intra-class consistency. Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. This research redefines the objectives and methods of ECG signal generation from the theoretical perspectives of information entropy and feature manifolds, providing a systematic solution to data imbalance problems in the medical field while establishing a theoretical foundation for the application of ECG-assisted diagnostic systems in real clinical environments. 
653 |a Physiology 
653 |a Accuracy 
653 |a Electrocardiography 
653 |a Data analysis 
653 |a Waveforms 
653 |a Datasets 
653 |a Disease 
653 |a Principal components analysis 
653 |a Telemedicine 
653 |a Medical personnel 
653 |a Cardiovascular diseases 
653 |a Generative adversarial networks 
653 |a Arrhythmia 
653 |a Wearable technology 
653 |a Entropy (Information theory) 
653 |a Diffusion models 
653 |a EKG 
653 |a Annotations 
653 |a Monitoring 
653 |a Heterogeneity 
653 |a Patients 
653 |a Data processing 
653 |a Data augmentation 
653 |a Signal generation 
653 |a Artificial intelligence 
653 |a Classification 
653 |a Dilution 
653 |a Signal classification 
653 |a Medical research 
653 |a Medical equipment 
653 |a Encoding-Decoding 
653 |a Diagnostic systems 
653 |a Professionals 
653 |a Algorithms 
653 |a Heart rate 
653 |a Environmental 
773 0 |t PLoS One  |g vol. 20, no. 8 (Aug 2025), p. e0330707 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3242333117/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3242333117/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3242333117/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch