Service function chain mapping method based on delay guarantee

Na minha lista:
Detalhes bibliográficos
Publicado no:Cluster Computing vol. 28, no. 5 (Aug 2025), p. 322
Autor principal: Zhuge, Bin
Outros Autores: Cai, Xiaodan, Zhang, Zitian, Ren, Qianye, Dong, Ligang, Jiang, Xian, Xu, Yueqian, Lu, Lingrong
Publicado em:
Springer Nature B.V.
Assuntos:
Acesso em linha:Citation/Abstract
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3242486585
003 UK-CbPIL
022 |a 1386-7857 
022 |a 1573-7543 
024 7 |a 10.1007/s10586-024-04967-6  |2 doi 
035 |a 3242486585 
045 2 |b d20250801  |b d20250831 
100 1 |a Zhuge, Bin  |u Zhejiang Gongshang University, School of Information and Electronic Engineering (Sussex Artificial Intelligence Institute), Hangzhou, China (GRID:grid.413072.3) (ISNI:0000 0001 2229 7034) 
245 1 |a Service function chain mapping method based on delay guarantee 
260 |b Springer Nature B.V.  |c Aug 2025 
513 |a Journal Article 
520 3 |a Network function virtualization achieves the softwareization of network functions through virtualization technology, reducing operational costs but introducing challenges in network orchestration complexity. To deploy service function chains efficiently and cost-effectively in a network function virtualization environment, a latency-guaranteed, optimized mapping method is proposed. Firstly, a model that minimizes the total network deployment cost for service function chains is established, comprehensively considering user latency requirements and network resource constraints. Secondly, a service function chain mapping method based on an improved sparrow search algorithm is introduced. Finally, the simulation results show that the bandwidth resource utilization of the ISSA-SFCM algorithm is improved by 3.8% and 8.5%, respectively, compared to the control DP-COA algorithm and First-Fit algorithm, with a higher service function chain request acceptance rate and lower average network cost. 
653 |a Network function virtualization 
653 |a Computer centers 
653 |a Software 
653 |a Control algorithms 
653 |a Network topologies 
653 |a Genetic algorithms 
653 |a Optimization 
653 |a Network latency 
653 |a Mapping 
653 |a Search algorithms 
653 |a Linear programming 
653 |a Operating costs 
653 |a Resource utilization 
653 |a Cloud computing 
653 |a Heuristic 
700 1 |a Cai, Xiaodan  |u Zhejiang Gongshang University, School of Information and Electronic Engineering (Sussex Artificial Intelligence Institute), Hangzhou, China (GRID:grid.413072.3) (ISNI:0000 0001 2229 7034) 
700 1 |a Zhang, Zitian  |u Zhejiang Gongshang University, School of Information and Electronic Engineering (Sussex Artificial Intelligence Institute), Hangzhou, China (GRID:grid.413072.3) (ISNI:0000 0001 2229 7034) 
700 1 |a Ren, Qianye  |u Zhejiang Gongshang University, School of Information and Electronic Engineering (Sussex Artificial Intelligence Institute), Hangzhou, China (GRID:grid.413072.3) (ISNI:0000 0001 2229 7034) 
700 1 |a Dong, Ligang  |u Zhejiang Gongshang University, School of Information and Electronic Engineering (Sussex Artificial Intelligence Institute), Hangzhou, China (GRID:grid.413072.3) (ISNI:0000 0001 2229 7034) 
700 1 |a Jiang, Xian  |u Zhejiang Gongshang University, School of Information and Electronic Engineering (Sussex Artificial Intelligence Institute), Hangzhou, China (GRID:grid.413072.3) (ISNI:0000 0001 2229 7034) 
700 1 |a Xu, Yueqian  |u Zhejiang Gongshang University, Yingxian School of Philanthropy, Hangzhou, China (GRID:grid.413072.3) (ISNI:0000 0001 2229 7034) 
700 1 |a Lu, Lingrong  |u UTStarcom Communications Ltd., Hangzhou, China (GRID:grid.413072.3) 
773 0 |t Cluster Computing  |g vol. 28, no. 5 (Aug 2025), p. 322 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3242486585/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch