Innovating Supply Chain Strategies: A Study of Strategic Flaws and Technological Gap in Supply Chain Management

Guardado en:
Bibliografiske detaljer
Udgivet i:IISE Annual Conference. Proceedings (2025), p. 1-7
Hovedforfatter: Mishra, Anubhav
Andre forfattere: Mazzone, Thomas
Udgivet:
Institute of Industrial and Systems Engineers (IISE)
Fag:
Online adgang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3243713229
003 UK-CbPIL
024 7 |a 10.21872/2025IISE_5157  |2 doi 
035 |a 3243713229 
045 2 |b d20250101  |b d20251231 
084 |a 102209  |2 nlm 
100 1 |a Mishra, Anubhav  |u NYU Graduate Student 
245 1 |a Innovating Supply Chain Strategies: A Study of Strategic Flaws and Technological Gap in Supply Chain Management 
260 |b Institute of Industrial and Systems Engineers (IISE)  |c 2025 
513 |a Conference Proceedings 
520 3 |a Supply chain management has developed as a critical function in businesses worldwide, specifically with the increasing complexity of globalized markets. Behemoth companies like Walmart1,2 and others have created senior-level supply chain roles, underlining its strategic importance. Furthermore, the demand for supply chain professionals is projected to grow by 19% between 2023 and 20333, faster than the average for all professions. However, despite these advancements, supply chain methodologies remain scarce, leading to persistent challenges like demand-supply misalignment and inefficiencies in management. This research paper inspects two core hypotheses behind the persistent inefficacies in supply chain strategies: the inadequacy of current cost-minimization approaches and outdated supply chain technologies. To address these inefficiencies, we propose an integrated, adaptive supply chain model that leverages real-time data streams, AI-driven demand forecasting, and dynamic inventory management. Our methodology emphasizes speed and flexibility over static cost minimization by replacing legacy ERP-based planning with AI-powered predictive analytics. This includes real-time replenishment mechanisms, active volume monitoring, and predictive adjustments based on external signals such as seasonal trends and market events. The proposed strategy aims to significantly reduce inefficiencies, improve supply-demand alignment, and enable near-perfect order fulfillment rates, while still achieving long-term cost savings. By incorporating these modern technologies, businesses can build a more resilient, responsive, and future-ready supply chain framework. 
610 4 |a Procter & Gamble Co Walmart Inc Bureau of Labor Statistics 
651 4 |a United States--US 
653 |a Inventory management 
653 |a Misalignment 
653 |a Predictive analytics 
653 |a Trends 
653 |a Forecasting 
653 |a Data transmission 
653 |a Enterprise resource planning 
653 |a Automation 
653 |a Generative artificial intelligence 
653 |a Suppliers 
653 |a Order processing 
653 |a Machine learning 
653 |a Supply & demand 
653 |a Technology adoption 
653 |a Pandemics 
653 |a Decision making 
653 |a Cost reduction 
653 |a Optimization 
653 |a Flexibility 
653 |a Supply chain management 
653 |a Real time 
653 |a Cost control 
653 |a Inventory 
653 |a Supply chains 
700 1 |a Mazzone, Thomas  |u Director of Industrial Engineering, NYU 
773 0 |t IISE Annual Conference. Proceedings  |g (2025), p. 1-7 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3243713229/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3243713229/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3243713229/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch