Comparative Analysis of Analytical Methods for Predicting NDVI Using Multi-Dimensional Environmental Data

Salvato in:
Dettagli Bibliografici
Pubblicato in:IISE Annual Conference. Proceedings (2025), p. 1-7
Autore principale: Al Bustanji, Yahya
Altri autori: Li, Hua, Ren, Jianhong, Sinha, Tushar, Choi, Jong-Won, Jin, Kai
Pubblicazione:
Institute of Industrial and Systems Engineers (IISE)
Soggetti:
Accesso online:Citation/Abstract
Full Text
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3243713294
003 UK-CbPIL
024 7 |a 10.21872/2025IISE_5260  |2 doi 
035 |a 3243713294 
045 2 |b d20250101  |b d20251231 
084 |a 102209  |2 nlm 
100 1 |a Al Bustanji, Yahya  |u Texas A&M University-Kingsville 
245 1 |a Comparative Analysis of Analytical Methods for Predicting NDVI Using Multi-Dimensional Environmental Data 
260 |b Institute of Industrial and Systems Engineers (IISE)  |c 2025 
513 |a Conference Proceedings 
520 3 |a In the past years, remote sensing has been used by scientists to estimate vegetation greenness due to advancements that have reduced accessibility and cost constraints. The Normalized Difference Vegetation Index (NDVI), a popular metric derived from satellite imagery's reflectance in the red and near-infrared spectral bands, has been widely used in the estimation of the vegetation greenness. However, the accuracy of NDVI can be affected by various environmental factors, including wind speed, wind direction, precipitation, humidity, sea level pressure, and cloud cover. To address these influences, analytical techniques are essential for predicting NDVI based on multi-dimensional environmental data, which enhances forecast precision and provides a deeper understanding of vegetation health. The objective of this study is to compare the accuracy in predicting NDVI using various approaches with multidimensional data, including multiple linear regression, support vector regression, random forest, and long short-term memory. A dataset spanning eight years and seven months (January 2016 to July 2024) of NDVI satellite data with high spatial resolution was used. This research provides valuable insights into NDVI estimation, with findings revealing that long short-term memory models incorporating time-lag analysis on NDVI data significantly outperform traditional regression methods. The use of time-lag, particularly a 1-month delay in NDVI data, proved critical in capturing temporal dependencies and long-term patterns in greenness of areas. These insights offer valuable guidance for researchers and practitioners in coastal ecosystem management, emphasizing the role of time-lag in improving decision-making and enabling more effective conservation strategies. 
651 4 |a Padre Island 
651 4 |a Texas 
651 4 |a United States--US 
653 |a Wind direction 
653 |a Accuracy 
653 |a Humidity 
653 |a Datasets 
653 |a Regression analysis 
653 |a Wind speed 
653 |a Cloud cover 
653 |a Satellite imagery 
653 |a Sea level 
653 |a Remote sensing 
653 |a Spectral bands 
653 |a Coastal management 
653 |a Multidimensional methods 
653 |a Influence 
653 |a Radiation 
653 |a Infrared spectra 
653 |a Decision trees 
653 |a Machine learning 
653 |a Vegetation 
653 |a Regression 
653 |a Research methodology 
653 |a Precipitation 
653 |a Hurricanes 
653 |a Spatial data 
653 |a Support vector machines 
653 |a Near infrared radiation 
653 |a Spatial resolution 
653 |a Decision making 
653 |a Cyclones 
653 |a Variables 
653 |a Multidimensional data 
653 |a Normalized difference vegetative index 
700 1 |a Li, Hua  |u Texas A&M University-Kingsville 
700 1 |a Ren, Jianhong  |u Texas A&M University-Kingsville 
700 1 |a Sinha, Tushar  |u Texas A&M University-Kingsville 
700 1 |a Choi, Jong-Won  |u Texas A&M University-Kingsville 
700 1 |a Jin, Kai 
773 0 |t IISE Annual Conference. Proceedings  |g (2025), p. 1-7 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3243713294/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3243713294/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3243713294/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch