Supervisory Control and Data Acquisition Systems for Utilities in the Dawn of Industry 5.0

Salvato in:
Dettagli Bibliografici
Pubblicato in:IISE Annual Conference. Proceedings (2025), p. 1-7
Autore principale: Teodecki, William
Altri autori: Darayi, Mohamad
Pubblicazione:
Institute of Industrial and Systems Engineers (IISE)
Soggetti:
Accesso online:Citation/Abstract
Full Text
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3243713433
003 UK-CbPIL
024 7 |a 10.21872/2025IISE_6716  |2 doi 
035 |a 3243713433 
045 2 |b d20250101  |b d20251231 
084 |a 102209  |2 nlm 
100 1 |a Teodecki, William 
245 1 |a Supervisory Control and Data Acquisition Systems for Utilities in the Dawn of Industry 5.0 
260 |b Institute of Industrial and Systems Engineers (IISE)  |c 2025 
513 |a Conference Proceedings 
520 3 |a Supervisory Control and Data Acquisition (SCADA) systems are essential for the operation of distributed industrial processes owned/operated by utilities i.e. water systems or electrical grids. While the primary function of SCADA is to monitor and control physical processes, SCADA also performs secondary functions that are critical to continuous operation and improvement of the overarching physical processes. SCADA systems contextualize realtime data to inform decision-making, alert stakeholders to potential issues, and mitigate downtime via situational awareness. Beyond contextualization of process data, SCADA systems are a critical component of analysis and utilization of real-time process data for intelligence and optimization. When designed appropriately, SCADA system architecture facilitates comparison of real-time data to historical data and/or process models, enabling capability for dynamic process control changes to optimize system performance in real-time. Additionally, SCADA Systems are composed of many interconnected components commonly organized by geographical regions, process control areas, and/or digital zones. As industrial processes become more complex and technology advances, new challenges and opportunities emerge, necessitating that SCADA systems are designed not only to optimize performance but also to enhance resilience, and safeguard against physical and cyber threats. This paper examines the evolution of SCADA systems, explores current state and future trajectories, and applies a requirements-based system development lifecycle (SDLC) that ensures Verification, Validation, Testing, and Training activities are embedded throughout the SDLC. 
653 |a Software 
653 |a Electric utilities 
653 |a Cybersecurity 
653 |a Data processing 
653 |a Architecture 
653 |a Control systems 
653 |a Supervisory control and data acquisition 
653 |a Critical components 
653 |a Access control 
653 |a Water utilities 
653 |a Data acquisition systems 
653 |a Water distribution 
653 |a Artificial intelligence 
653 |a Building automation 
653 |a Process controls 
653 |a Optimization 
653 |a Systems development 
653 |a Situational awareness 
653 |a Design 
653 |a Stakeholders 
653 |a Real time 
653 |a Industry 4.0 
653 |a Industry 5.0 
653 |a Data transmission 
700 1 |a Darayi, Mohamad 
773 0 |t IISE Annual Conference. Proceedings  |g (2025), p. 1-7 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3243713433/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3243713433/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3243713433/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch