Faculty Perceptions on the Use of Generative AI in Engineering Education

Guardado en:
Detalles Bibliográficos
Publicado en:IISE Annual Conference. Proceedings (2025), p. 1-6
Autor principal: Keyser, Robert S
Otros Autores: Milam, Brayden, Li, Lin, Law, Jeanne, Ergai, Awatef, Matheny, Lauren, Nino, Valentina, Dara, Sai Siddarth
Publicado:
Institute of Industrial and Systems Engineers (IISE)
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3243713560
003 UK-CbPIL
024 7 |a 10.21872/2025IISE_6240  |2 doi 
035 |a 3243713560 
045 2 |b d20250101  |b d20251231 
084 |a 102209  |2 nlm 
100 1 |a Keyser, Robert S  |u Industrial Engineering Kennesaw State University Marietta, GA, USA 
245 1 |a Faculty Perceptions on the Use of Generative AI in Engineering Education 
260 |b Institute of Industrial and Systems Engineers (IISE)  |c 2025 
513 |a Conference Proceedings 
520 3 |a Generative AI is a type of artificial intelligence capable of creating content like text, images, or music based on user prompts or inputs. Generative AI (Gen AI) models are trained on large amounts of data and use smart algorithms to create things that appear to be made by humans. This study aims to develop an understanding of Generative AIs current and potential impact on engineering education from the perspective of engineering faculty at an R2 institution. In particular, we aim to explore faculty perceptions of Gen AIs usefulness and ease of use following the Technology Acceptance Model (TAM) framework, faculty's intent to use AI vs actual use, how it has been integrated into the classroom (i.e., types of assignments or activities), and any benefits or concerns with adopting Gen AI in engineering education. We employed mixed methods statistical analysis techniques, such as descriptive and inferential statistics, as well as exploratory factor analysis, to identify pattern, trends, relationships, and contrasts with respect to faculty perceptions of using Gen AI in teaching engineering courses. QualtricsTM survey results were tabulated to provide insights into faculty perceptions on the use of Gen AI. Our results show that about 1/2 of faculty survey responses integrate Gen AI content into their teaching materials, about 1/2 of faculty responses use Gen AI frequently or regularly, and about 2/3 feel somewhat to extremely confident in using AI technologies in engineering education; however, most respondents use Gen AI as a text-based alternative for writing assistance (i.e., drafting, content generation, editing, and summarizing) and educational tools (i.e., creating quizzes or explanations). By discovering faculty perceptions towards integrating Gen AI into engineering curricula, this research contributes to ongoing discussions on the role of Gen AI in higher education and provides insight into the extent to which engineering faculty currently embrace Gen AI in engineering education at an R2 institution. 
653 |a Higher education 
653 |a Perceptions 
653 |a Technology adoption 
653 |a Curricula 
653 |a Pattern analysis 
653 |a Discriminant analysis 
653 |a Engineering education 
653 |a Educational materials 
653 |a Generative artificial intelligence 
653 |a Statistical methods 
653 |a Factor analysis 
653 |a Job performance 
653 |a Educational technology 
653 |a Technology Acceptance Model 
653 |a Likert scale 
653 |a Statistical analysis 
653 |a Information technology 
653 |a Chatbots 
653 |a Artificial intelligence 
700 1 |a Milam, Brayden  |u SPCEET Kennesaw State University Marietta, GA, USA 
700 1 |a Li, Lin  |u Systems Engineering Kennesaw State University Marietta, GA, USA 
700 1 |a Law, Jeanne  |u English Kennesaw State University Kennesaw, GA, USA 
700 1 |a Ergai, Awatef  |u Industrial Engineering Kennesaw State University Marietta, GA, USA 
700 1 |a Matheny, Lauren 
700 1 |a Nino, Valentina 
700 1 |a Dara, Sai Siddarth 
773 0 |t IISE Annual Conference. Proceedings  |g (2025), p. 1-6 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3243713560/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3243713560/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3243713560/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch